PHYSICAL REVIEW E, VOLUME 64, 056109
Constructing, characterizing, and simulating Gaussian and higher-order point distributions
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The definition and the properties of a Gaussian point distribution, in contrast to the well-known properties of
a Gaussian random field are discussed. Constraints for the number density and the two-point correlation
function arise. A simple method for the simulation of this so-called Gauss-Poisson point process is given and
illustrated with an example. A comparison of the distribution of galaxies in the PSCz catalog with the Gauss-
Poisson process underlines the importance of higher-order correlation functions for the description for the
galaxy distribution. The construction of the Gauss-Poisson point process is extendedchtpadiné Poisson
cluster process, now incorporating correlation functions ugthoorder. Simulation methods and constraints on
the correlation functions are discussed for mpoint case and detailed for a three-point case. As another
approach, well suited for strongly clustered systems, the generalized halo model is discussed. The influence of
substructure inside the halos on the two- and three-point correlation functions is calculated in this model.
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I. INTRODUCTION zations in[12—-14)). Another approach to construct point pro-
cesses is based on purely geometrical considerations, e.g.,
Stochastic models are often used to describe physical phgoints are randomly distributed on randomly placed line seg-
nomena. For spatial structures, two broad classes of stochasient(se€[15,16). As a third possibility one can start from a
tic models have been established. One approach is based onaracterization of point processes by the probability-
random fields and the other one on random distributions ofjenerating functional and the expansion in terms of correla-
discrete objects, often only points, in spasee the contri- tion functions. This is the way pursued in this work.
butions in[1] for recent applications and revievStochastic The simplest point process is a Poisson process showing
point distributions are used to describe physical systems ono correlations at all. Since the galaxy distribution is highly
vastly differing length scales. The physical applications disclustered, a Poisson process is not a realistic model. The
cussed in this paper deal with the large-scale structures in theodel with the next level of sophistication is a Gauss-
Universe formed by the distribution of galaxies. However,Poisson process, the point distribution counterpart of a
the methods are much more versatile. Gaussian random field. Whereas the properties of Gaussian
Models for the dynamics of cosmic structures are ofterrandom fields have been extensively studied, the Gauss-
based on nonlinear partial differential equations for the mas®oisson process has not been discussed in the cosmological
density and velocity field. These models relate the initialliterature in a systematic way. Some of the statistical prop-
mass density and velocity field, primarily modeled as Gausserties of random fields directly translate to similar statistical
ian random fields, to the present day values of these fieldproperties of point distributions, but some important differ-
The nonlinear evolution leads to non-Gaussian features iences also show up. The systematic inclusion of higher-order
the fields. However, observations supply us with the posicorrelations, as well as the characterization, and the simula-
tions of galaxies in space. To compare theories with obsertion algorithms for such point processes will be discussed.
vations one has to relate fields with point distributions. Both Recently, a related class of stochastic models for the gal-
deterministic and stochastic models have been used for thisxy distribution, the halo model, attracted some attention
purpose so fafte.g.,[2,3]). (see, e.g.f17-20). These models are based on the assump-
Pursuing a direct approach, the observed spatial distribution that galaxies are distributed inside the correlated dark
tion of galaxiesgalaxy clusters, etgis compared to models matter halos. Using the probability generating functional, the
for random point sets. Only a few attempts towards a dynamiwo- and three-point correlation function will be calculated
ics of galaxies as discrete objects have been nisele, e.g., for this model, extending the results j@1] to include the
[4]), however, stochastic models are quite common. Followeffects of halo substructure.
ing the works in[5—8], and[9] a purely stochastic descrip- The outline of this paper is as follows. In Sec. Il the
tion of the spatial distribution of galaxies as points in spaceproperties of the probability-generating functional of a point
is given in this paper. process and the expansions in several types of correlation
Models for stochastic point processes can be constructefdinctions are briefly reviewed. The characterization of the
using the physical interactions of the objects, typically lead-Gauss-Poisson process is given in Sec. Ill, and the physical
ing to Gibbs processesee, e.9.[10,11], and the generali- consequences of the constraints are discussed. A close rela-
tion to Poisson cluster processes allows us to simulate a
Gauss-Poisson procesee Appendix BL In Sec. IV simu-
*Email address: kerscher@theorie.physik.uni-muenchen.de lations of the Gauss-Poisson processes and the line-segment
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process are used to show how the Gaussian approximatiand the second factorial cumulagy(r) and the two-point
influencesJ(r) function, a statistic sensitive to higher-order correlation functioré,(r) quantify the two-point correlations
correlations. A comparison of the galaxy distribution within in excess of Poisson distributed points.

the PSCz survey with a Gauss-Poisson processes illustrates A systematic characterization of a point process is pro-
the importance of higher-order correlations. In Sec. V arvided by the probability generating functional or a series of
extension of the Gauss-Poisson point process to-point  probability generating functionsee Appendix A Equiva-
Poisson cluster process is discussed. Detailed results are dent to a random distribution of points in space, one consid-
rived for a three-point Poisson cluster procége simula- ers a point process as a random counting measure. A realiza-
tion recipe is given in Appendix B The characterization of tion is then a counting measuid, which assigns to each

a generaln-point process is discussed that is again detailedguitable setACRY the number of pointsN(A) inside. For

for a three-point case. The differences between a point prcsuitable functions(x) one defines th@robability generat-
cess and a random field are highlighted in Sec. VI. Modelsng functionalof a point process via

for strongly correlated systems are mentioned in Sec. VII.

The focus will be on the “halo model.” Using the formalism

based on the probability generating functionals the correla- G[h]=E exp( f  N(dx)In h(X)]

tion functions of the “halo model,” including the effects of K

some open problems are mentioned. An outlook is providegypectation value, the ensemble average over realizations of
in Sec. IX. As an eXample, the prObability-genel’ating fUnC'the point process. Equiva'ent'y,

tion of a random variable and its expansions in several kinds

of moments is reviewed in Appendix A.

; @

GLh]=E LT ho)
wherex; are the particle positions in a realization. Consikler
compact disjoint set#;, and letn;=N(A;) be the number
of points insideA;. The PG function of the&-dimensional

Probability generatingPG) functionals and their expan- random vectorify, ... .ny) is then
sions in different kinds of correlation measures have been
used to describe noise in time seriesy.,[22]) and the elec- K .
tromagnetic cascades occurring in air showers., [23]). Pu(2)=Py(zy, ... z)=E H z'|. (4)
They have been employed in the theory of liquidg.,[24]) =
and other branches of many-particle physies.,[25]). The  Together with a continuity requirement the knowledgeabf
mathematical theory of PG functionals for point processes isinite dimensional PG function, determines the PG func-
nicely reviewed in[26]. Stochastic methods based on PGtional G and the point process completel.g.,[26]). One

functions have been introduced to cosmology[Bl(the PG obtains the PG functioR,(z) =G[h’] of the random vector
functional was presented {i27]), and became well known 7 ysing

following the work of[7] and[8]. Focusing on the factorial

moments(the volume averaged-point densities and on k

count in cells,[9] discussed several expansions of the PG h/(x)zl_z (1-2))1a (%), (5)

functions. In the following only “simple” point processes =1 !

will be considered: at each position in space at the most one . . . .

object is allowed. This assumption is physically welljustifiedWhere_lA(X) is the indicator funqtlon of the seh, W.'th

for galaxies. Also, for quantum systems the methods shoul (=1 forx_eA and zero other_W|se. Several expansions of

be refinedsee, e.qg.[28] for fermionic (determinantal point e PG functionalG[h] are possmle{26]. The expansion in

processes terms of the product densitigs, (the Lebesgue densities of
An intuitive way to characterize a point process is to usethe factorial moment measuje®ads

nth-product densities:@ (X, . .. X,)dV;---dV, is the

, )

II. PRODUCT DENSITIES, FACTORIAL CUMULANTS,
AND THE PROBABILITY GENERATING
FUNCTIONAL

probability of finding a point in each of the volume elements _ 1
dV; to dV,. For stationary and isotropic point fields (x) G[h+ 1]_1+n§=:1 HfRddxl' o dedX"Q”(Xl’ -+ %n)
=p is the mean number density, and the product density
(with a slight abuse of notatigris ©,(Xq,X3) = 05(r) with Xh(xq)---h(Xp). (6)
r=|x,—X,| being the separation of the two points. The fac- ) . .
torial cumulantsCy (X, . . . x,) are the irreducible or con- For the f_actorlal cumulants,; or correlation functionst,
nected parts of th@th-product densities. For example, for one obtain$
n=2
The relations to the generating functional®, F, and G
defined by [8] are G[h]=R[h], G[h]=Fh—-1] and G[h]
02(r)=02+cpp(r) =021+ &(r)) (1) =expg[h—1].
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In G[h+1]=r§1 prddxl' . ﬁﬁddxnc[n](xl, o Xn)
Xh(xq)---h(x,)
Qn
D R I At
Xh(xq)- - -h(X,). (7)
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A. Constraints on &,(r) and ¢

A functional G[ h] defined by Eq(10) is a PG functional
of a point process if and only if thé,(z) as given in Eq(4)
are probability generating functions. This will lead to restric-
tions on the two-point correlation functiafy and the num-
ber densityo as discussed ifi29] and[30]. A P,(z) given
by Eq. (4) always has to be positive and monotonically in-
creasing with each componentof z, and hence IR (z) is
nondecreasing in each componentzofWith Egs. (4), (5),
and(10) one gets

As a third possibility the PG functional can be expanded

around the origin,

oo 1 -
Glh]=Jdo+ > — | dxg--- | dXnjn(Xes - - . Xn)
n=1 Nn! Rd

R4

Xh(xy) - - -h(Xp). )
The Janossy densitieg,(Xq, ... X,)dV;---dV, are the
probabilities that there are exacthypoints, each in one of
the volume elementdlV; to dV, . Convergence issues of
these expansions are discussed in Sec. VIII.

Ill. THE GAUSS-POISSON POINT PROCESS

For a stationary Poisson process with mean number den-

sity o the PG functional is

InG[h+ 1]=QﬁHddxh(x), (9)

corresponding to a truncation of expansia@h after the first
term. Truncating after the second term, one obtains the P
functional for the Gauss-Poisson procg2s,30

2
INnG[h+1]=p Jﬂddxh(x)wL %J]Rddxﬁﬁddygzﬂx—yb
X h(x)h(y), (10)

completely specified by its mean number dengitand the
two-point correlation functiorg,(r).

dnP(z) 5 « B B
T el oS, | o] dveabeyiz )

=

=

0 (17
for any z;=0, where|A|| is the volume of the sed,. The
rather obvious constrairg=0 can be derived by setting
=1.Forz;=1, j#i, and eitheiz;=0 orz;>1 the following
two nontrivial constraints emerge:

0
WfAldXLidy&z(lx—yl)\l, (12

JdXJ dyé&o(|x—y))= A Zi%0- (13
A Aj 2 (Y

(z—-1) -

One can show that these two conditions provide a necessary
and sufficient characterization g§(r) andg, to assure that
G[h], as given in Eq(10), is a PG functional 30].
Equation(12) constrains the shape and normalization of
the two-point correlation functions admissible in a Gauss-

®oisson process. Faéy=A=A,

%deﬁ\dygz(lx—yl)=W02(A)s1, (14)

whereo?(A) are the fluctuations of count in cells in excess
of a Poisson process, aml=¢|A| is the mean number of
points inside the celA. Hence, the total fluctuations of the
number of pointdN inside A for a Gauss-Poisson process are

There is a close resemblance to random fields. For a ho-

mogeneous random fielal(x) with meanE[;Q:;the den-
sity contrast is defined by(x)=[p(x) —p]/p. A homoge-

E[(N—N)2]=N+N20%(A)<2N (15)

neous and isotropic Gaussian random field is stochastically,q must not exceed twice the value of the fluctuations in a

fully specified by its mearp and its correlation function
E(x—yl)=E[ 8(x) 5(y)] [31]. Here,E is the average over
realizations of the random field. The higHeonnectegcor-
relation functionst’=0 with n>2 vanish. Similarly the cor-
relation functionsé, for n>2 vanish in a Gauss-Poisson
process. However, some important differences between
Gaussianrandom fieldand a Gauss-Poissqgmint process
also show up.

Poisson processo=0) for any domainA considered. An-
other way of looking at constrairii2) is by takingA, as an
infinitesimal volume element centered on the origin #@yd
equal to some voluma,

a

0 f dyé&,(lyh=<1. (16)
A
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Consistent with Sec. Il B this tells us that sitting on a pOint(QZf(r))_ Henceevery Gauss-Poisson process is a Poisson

of the process on average at the most one other point iBluster process of the above type, and vice versa.

excess of Poisson distributed points can be present.
Now consider two volume elementd;=dV, and A,

. A C. Physical implications
=dV, separated by a distance fthen Eq.(13) implies

From the preceding section one concludes that at maxi-

&(r)=0. (17  mum two points form a cluster in a Gauss-Poisson process.

Therefore, no point distribution with large-scale structures

Hence, only clustered point distributions can be modeled byan be modeled reliably with this kind of process. This has
the Gauss-Poisson process. Any zero crossing,(n) al-  physical implications both for the galaxy distribution and

ready indicates the presence of higher-order correlations. percolating/critical systems.
More specific, from the observed galaxy distribution a
B. The Gauss-Poisson process as a Poisson cluster process ~ Scale-invariant two-point correlation functiafy(r)=Ar""”

. . . with y~1.8 is deduced. Clearly such a correlation function
The Gauss-Poisson process can be interpreted as a sim Ses not satisfy the constrai(it2). For 0< y<3 a cutoff at
Poisson cluster process. This is important for simulation§ '

(see Appendix B 1 arge scales has to be introduced. For the galaxy distribution
A Prc))ipsson cluster process is a two-stage point proces cut-off at approximately 20°* Mpc is the lowest value
. P! - ge p P That is roughly compatible with the observed two-point cor-
First one chooses Poisson distributed cluster centers, the, .. ; S
“ oo . rélation function. Taking into account the observed number
parents,” with number density , and then attaches a sec-

ond point process — the cluster to each cluster ceftker density of the galaxies, a cutoff even on this small scale does

) . . not help. Still the constrainfl2) is strongly violated, indi-
cluster center is not necessarily part of the point process _.. L . , ;
The PG functional of a Poisson cluster process is then give(r:iatlng non-negligit_)le_ higher-order correlation functideee_
by [26] also Sec. IV Q. Similarly, a zero crossing or a negative
&,(r) is violating the constrainl3) and also indicates that
higher-order correlations are present. There are indications
_ _ that the distribution of galaxies shows a negat#ér) on
nGLh]= fRddXQP(GC[mX] b (18 some scale larger than R0! Mpc, followed by a positive
peak at approximately 1201 Mpc [32—-34. The Gauss-
with G[h|x] being the PG functional of the point process poisson process is not able to describe these features in the
forming the cluster at center. Now consider the PG func- (distribution of galaxies and galaxy clusters.
tional of a cluster with at maximum two poinfgompare Also a percolating cluster shows scale-invariant correla-
with Eq. (3)], tions. The correlation length, specifying, e.g., the exponential
cutoff of the two-point correlation function, is going to in-
finity near the percolation threshold. Therefore, the geometry
Gc[h|X]=Q1(X)h(X)+QZ(X)h(X)f LAyf(x=yDh(y), of the largest cluster cannot be modeled with a Gauss-
i (19) Poisson processes. Higher-order correlations are essential to
describe the morphology of such a system. This again illus-

whereq;(x) is the probability that only one point, the cluster trates thqt the taiils of the distributions, in.this case the
center ak, is entering the cluster, whereas(x) is the prob- ~ asymptotic behavior of the two-point correlation function is
ability that a second point is added. Clearty(x)+q,(x)  €ssential. . _

=1. The probability density(|x—y|) determines the distri- 10 Summarize these results: already by looking at the
bution of the distancéx—y| of the second poiny to the two-point correlation function and the density, one is able to
cluster center, and is normalized according tzf(|z)=1. exclude the Gauss-Poisson process as a model. However one
By writing f(|x—y|) one assumes that the probability den- c&nnotturn the argument around and show that a given point
sity f is symmetric inx andy. Indeed, the PG functional in distribution is compatible with a Gauss-Poisson process us-
Eq. (18) is invariant under interchanging andy, and this ing the two-point correlation function alone. There are point

assumption does not impose any restrictions. Using this ex2rocesses with higher-order correlations satisfying the con-
pression and Eq18) one obtains straints(12) and(13) as discussed in Sec. IV A.

IV. DETECTING DEVIATIONS
INnG[h+1]= f JAxep[1+02(x)]h(x) FROM THE GAUSS-POISSON PROCESS
R

After having outlined the basic theory of the Gauss-
Poisson process, we discuss in this section how one can de-
+ ]Rddx Rddygpqz(x)f(|x—y|)h(x)h(y), tect non-Gaussian features in a given point set.

(20 A. The line-segment process

which equals the PG functional for the Gauss-Poisson pro- First a two-dimensional analytic example is studied. In
cess (10) for e=pgy(1+qy) and & (r)=2(e—ep)/ the line-segment process points are randomly distributed on
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FIG. 1. Plot(a) shows a real-
ization of the line-segment pro-
AR P B cess inside the unit square with
A By B L number densityo =200 (for the
. PLL T I e SR other parameters see the teand
. TR PR T R S the corresponding two-point cor-

‘ C e A N relation function &,(r) (r is in

- () - T lx“‘x(by)K

BT units of the box length the
S dashed oner area was deter-
mined from 1000 realizations, the
theoretical value is given by the
dashed line, nearly on top of the
sample meartsolid line). Plot (b)
shows a realization of the Gauss-
Poisson process with =200 and
plot (c) a realization of the high
density line-segment process with
©0=500, both with the corre-
sponding two-point correlation
function.

£,(r)
&,(r)
£(r)

0.01 L L1 L o AR 0.01 R 11 L ‘IILALAI 0.01 T W

line segments that are themselves uniformly distributed in To define J function the spherical contact distribution

space and direction. The number of points per line segmerf(r) is needed, i.e., thdistribution function of the distances

is a Poisson random variable. According to Réb] r between an arbitrary point and the nearest object in the
point set F(r) is equal to one minus the void-probability

1 /1 function: F(r)=1—Py(r). Another ingredient is the nearest
ol TTT forr<I neighbor distance distributioB(r), defined as thelistribu-
o(r)= s (21)  tion function of distances r of an object in the point set to the
0 forr=I; nearest other poinf49]. For a Poisson process the probabil-

ity to find a point only depends on the mean number density

| is the length of the line segments aadis the mean num- ¢ léading to the well-known result
ber density of line segmentkg, o/0,, ¢ denote the mean
length density, the mean number of points per line segment Gp(r)=1—exp —|B|)=Fg(r), (22
(which can be smaller than onexnd the mean number den-
sity in space, respectively. A similar model for the distribu-
tion of galaxies was discussed ja6]. On small scales
<, &(r)e<r~1, qualitatively similar to the observed two-
point correlation function in the galaxy distribution. )= 1-G(r)
This structured point process incorporates higher-order 1—-F(r)
correlations. In Fig. 1 the line-segment process is shown in i _ )
comparison to a Gauss-Poisson process with the same tw¥2S suggested if46] as a probe for clustering of a point
point correlation function for the parameters-0.1, o,  distribution. For a Poisson distributioi(r) =1 follows di-
=201, o =200, andg =500. A number densitg > o vio- rectly from Eq.(22). A clustered point dlst_rlbqtlon implies
lates the constraint Eq12) and no Gauss-Poisson processd(f)<1, whereas regular structures are indicatedJby)

equivalent to the two-point level to such a line-segment pro=1- As discussed if47] one can expres(r) function in
cess exists. terms of then-point correlation functions,, :

where |B,| is the volume of ad-dimensional sphere with
radiusr. The ratio

(23

o0

[
B. Detecting higher-order correlations J(l’)=1+2 ( ||Q) f Xm"‘J Ax&4+1(0Xq, ... X).

As can be seen from Fig. 1, the point processes are indis- - ' Br Br o4

tinguishable on the two-point level. For another example see (24)

[35,36. The differences between these point distributionsB, is a d-dimensional sphere with radiuscentered on the

can be investigated with statistical methods sensitive t@rigin. For a Gauss-Poisson process in two dimensions, i.e.,

higher-order correlations. One may use Minkowski function-£,=0 for n>2, the above expression simpliffes

als ([37], for reviews sed38,39), percolation techniques

[40], the minimum spanning trdd 1], a method sensitive to

three-point correlationf42], or directly calculate the higher  2unfortunately Ref[47] discussed this Gaussian approximation

moments[43-45,9. In the following J function is used to  with examples of two-point correlation functions, which are not

guantify the higher-order clusteririg6-4§. admissible in the Gauss-Poisson process.
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FIG. 2. The spherical contact
distribution F(r) [plot (a)], the
nearest neighbor distributid®(r)
[plot (b)], andJ(r) function [plot
(c)] are shown for the Gauss-
Poisson proces$o =200, mean
value (dashed ling and variance
(shaded areaestimated from 1000
realizationg, and the line-segment
process ¢ =200, solid ling; r is
in units of the box length. The
J(r) function according to Eq.
(25) (dashed dotted linelies on
top of the estimated mean. The
dotted line is marking the results
for a Poisson process. The se-
quence of solid lines in plafd) is
the J(r) function for line-segment

I - processes witlp=100, 150, 200,
OF, 0wl guw Fgaw [ o7 300, 400, 500, 600, bending down
4 Bee gt R successively.

@ ' -

0 0.02 0.04 0.06

r on the estimator, nor on the exact sample geometry, which is
J(r)=1—927TJOdS§2(S)- (25  indeed more complicatetsee[52]). For J(r) function the

) _ minus estimator is us€d5,55.
In Fig. 2 the results foF(r), G(r), andJ(r), estimated |, Fjg. 3 an estimated two-point correlation function is
from several line-segment processes, and the Gauss-Poissgi,wn. The integral

process are shown; all the processes investigated had the

same two-point correlation functiofy(r) given in Eq.(22).

The line-segment process allows for larger voids than the Y ‘Hgdy52(|y|)%4-4 (26)
Gauss-Poisson process, as seen flp>Fgp. On small

scales)(r) of the line-segment process is well approximated;s yjiolating the constraintl6), and the corresponding Gauss-
by J(r) for the Gauss-Poisson process. However on largggisson process does not exist. Indeed higher-order correla-
scales the Gauss—Poisson process shows significantiiyns functions have been detected [B6] using factorial
smaller J(r) function than the line-segment process. Themgoments. By thinning the galaxy distributidie., randomly
J(r) function is known analytically for several point process sypsampling one generates a point set with the same corre-
models[46,48. In any of these cases a smalli{r) is an  |ation functionsé, as the observed galaxy distribution, how-

indication for stronger(positive) interaction between the oyer with a reduced number of points. Since the number
points (see alsq[50,51]). Specifically for Gibbs processes

(see, e.g.[15]) an attractive interaction leads to a monotoni- w0 , .

cally decreasing)(r) and a stronger interaction leads to . (®)

smaller values ofl(r). Hence, the presence of higher-order ook N\ ]

correlation functions in the line-segment process gives rise to _ 'f 1 %'”f‘?\\

a reduced clustering strength, in the sense discussed abovez £F “"\ -

Clearly, the signal ofi(r) also depends on the number den- | i oaf M““

sity. 0z :
C. The non-Gaussian galaxy distribution ' r [Mpec /;f] ’ " [Mpe/h] ¢

As al_ready mentioned, the three-dlmenSIOHaI dlstrlbu_tlon FIG. 3. In plot(a) the observed two-point correlation function
of galaxies cannot be modeled in terms of the Gauss-Poisso f th | limited sub le with 160* Moc denth
process: the constraints on the density and two-point corr 2(r) of the volume-limite subsample wit pc dept

. C . . L &rom the PSCz galaxy catalog is shovsolid ling). The dotted line
lation function are violated. In the following, this is illus-

. o b and the oner area are estimated from 200 realizations of the
trated with a volume-limited sample of 100" Mpc depth,  Gauss-Poisson process using the estimated two-point correlation

extracted from the PSCz galaxy catald@]. The volume-  fnction as an input, but with only a fifth of the number of points. In
limited sample incorporates 2232 galaxies with galactic latip|ot (b) the J(r) function of the same sample is shown with 100%
tude |b|>5°. A detailed description of the sample consid- (solid line), 50% (short dashed line and 20% of the galaxie$ong

ered here may be found [83]. Estimators for the two-point dashed ling The shaded area is the oneregion obtained from the
correlation function are quite abundasee[54], and refer-  Gauss-Poisson process corresponding to the galaxy sample with
ences therein The results presented here do neither dependnly 20% of the points.
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density enters linearly in the constraii6), a comparison of
the thinned galaxy distribution with the Gauss-Poisson pro- G[h]zexp{ JﬁddXQc(Gc[mX]— 1)]
cess becomes feasible. The strongly interacting galaxy distri-
bution, as indicated by the small values Xi), shows in- “ 1
creasingly weaker interactidhigher values ofl(r)] for the =ex JRddXQc nzl mfRder - ﬁRdan
diluted subsample€Fig. 3). ‘
Now consider a sample with only 20% of the actual ob-
served galaxies, where the constragib®) is satisfiedcom- XJn(Xgs X[ X)D(Xq) - - 'h(Xn)_]-H- (28)
pare with Eq.(26)]. This diluted sample is compared to the
Gauss-Poisson process with the same two-point correlatiodere the probabilityyg of having no point in the cluster at
function. The&,(r) determined from the simulated Gauss- is assumed to be zero, i.d,=0. This does not impose any
Poisson process matches perfectly with the observed corr@dditional constraints, it only leads to a redefinition of the
lation function(Fig. 3. On small scales](r) function of the ~number density of cluster centegg=0(1+do).
thinned PSCz is reasonably modeled by the Gauss-Poisson USing this more formal approach the PG functional of the
process. However, on large scales the Gauss-Poisson proc&dUss-Poisson process can be written in terms of the Janossy
shows stronger interactions, whereas the thinned galax ensities withj,=0 for n>2;
sample, with its higher-order correlation functions, shows j1(X1|X) =q1(x) P (x—x4),
weaker interactions in the sense discussed in Sec. IV B. ) (29)
J2(X1,%2|%) = 02(X) 8P (X—Xq) F2(Xa|X7) 2!
Herej; (j,) are the probability densities for the spatial dis-
V. POINT PROCESSES WITH HIGHER-ORDER tribution of one(two) points in the cluster, multiplied by the
CLUSTERING probabilityq, (g,) that there are exactly or{éwo) points in
) ) _ the cluster ai. P is the d-dimensional Dirac distribution.
As already mentioned, the measured two-point correlat|oq2(xz|xl) is the probability density of the second poixt
function of the galaxy distribution together with the observednder the condition that there is a pointat normalized by
density of galaxies violates the constraints, E({®) and JdXof 5(Xo|X1) = 1.
(13). Consequently the distribution of galaxies cannot be The PG functional28) is invariant under changes of the
modeled with the Gauss-Poisson process. Even more congrder of integration, implying that one can use the
pelling, there is a clear detection of higher-order correlationg, (x,, . . .x,|x) symmetrically defined in all coordinatés-
in the galaxy distribution(e.g., [44,57,5§). Hence, one is cluding x). With the additional assumption of homogeneity
interested in analytical tractable approximations of the cumuand isotropy one gets,(x,|x;)=f(|x;—X,|), as already
lant expansion(7). Hierarchical closure relations have beenused in Sec. Ill B for the construction of the Gauss-Poisson
extensively studiedsee Sec. VII A. In the following a trun-  process.
cation of expansion{7) beyond the Gaussian term and the
n-point Poisson cluster processes will be used. A. The three-point Poisson cluster process
Such a truncation may serve as a model for the galaxy |, 5 three-point Poisson cluster process B is trun-
distribution in the weakly nonlinear regime. Using perturba-q4e at the third order and at the most three points per clus-
tion theory one may show thato (&,)? (see[59]). For large ter are allowed. Additional to E¢29)
separations the correlation functioré,(r) is smaller than

unity, and consequently a truncation of expansi@hat n j3(X1,X2,X3]X) =q3(X) 8P (X—X1) F3(X2,%3]X1)3!  (30)
>2 provides a viable model for the large-scale distribution ) N .
of galaxies. appears, with the probabilitgs(x) that the cluster consists

The general Poisson cluster process is the starting poinUt ©of three points, andq,+q,+qz=1 with ¢;=0.
consider the expansion of the cluster PG functidBglh|x]  T3(X2.XsX1) is the probability density that there are two

in terms of Janossy densities conditional on the cluster centd}Qints atx; andxs, under the condition that one point is at
x [see Eq(89)]: X1, with the normalizationfdx,fdxsfs(X,,X3/X;)=1. In-
serting these definitions one obtains

InG[h]= dexwp%(xl)[h(xl) —1]

o0 1 -
Gclhix]=Jo+ > | dxg--- | dXpjn(Xq, .. . Xg[X)
n=1 Nl Jgd Rd
+ | dxiep [ dXa0a(Xe) Fa(XalXe)
R R

Xh(Xg) - -h(xp). (27)
X[h(xp)h(xz)—1]
Explicit expression for the Janossy densities are given below. +f ddlepf ddxzf LdX303(x1) F3( X2, X3 X1)
The PG functional of a Poisson cluster process is then given : : :
by X[h(xp)h(x2)h(x3) —1]. (31)
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As already mentionedfs(X,,X3/X;) can be assumed to be k

symmetric in its three arguments. Slightly abusing notation, 0<g|A,|+Z 0?A || A E(A AN (zZ—1)
let f5(Xq1,X5) andf;(Xq,X,,X3) be the symmetrically defined

densities corresponding t(x,|x;) and f3(x,,X3/X;), and

k k
' o3 _
define +2 2 S IAllAlIAEALALA) -1z -1),
f(zs)(xl,xz)=j}Rddx3f3(x1,x2,x3). (32 39
‘ with the volume-averaged correlation functions
Replacingh by h+1 and rearranging the terms the factorial

cumulant expansion of the three-point cluster process reads = A A= 1 dx. - - - f dx
gn( 1 ’ n) |Al|"'|An| AL 1 A, n
InG[h+1]= fﬁddxlh(xl)gp(uqz(x1)+2q3(xl)) X En(Xyy + o Xn), (36)
and for conS|stencf1(A) 1. Again, forz;=1 one obtains
+ fRddxldedXZh(Xl)h(XZ)Qp(qZ(Xl) 0=0. The nontrivial constraints read
3 _ .
X Ta(X %) +303(x0) 15700, %2) 12 0| AJE(A A)— 0UAJZES(AL A A, (37
+ ﬁ|§ddxl ﬁp{ddxz JAHddX‘?,h(Xl)h(Xz)h(Xg) OSEEB(Al YAS !AS)’ (38)
X f X2,X3). 33 — —
@olal¥a)ts(x0.%z.) B3 1= olAJE(ALAY +elATEA LA
Comparing Eq(33) with the expansior{7) one arrives at 0? 2

_ Q _
- 7|AS|Z§S(AI !ASiAS)_ ?|Ar|2§3(AI vAr aAr)
0=(0q1+20,+30d3)0,=(1+02+203) 0y,

— Q% AJIAE3(ALAS A, (39
Ex(Xq,Xo) = 2! [Gof o(Xq,Xo) Equation(37) can be derived by setting,=0 andz =1 for
(1+q2+2q3)29p all i#s, Eq. (38) follows from z;—x andz=1 for all i
3) #s. Usingz, , z— does not lead to new constraints. With
+30sf37 (X1, %2) ], z,=0=z, r#s, andz=1 for all i#r,s one obtains Eq.
(39). No additional constraint arises by setting 2.
31 Equation(38) implies £;=0. Equation(37) and Eq.(39)
&3(Xq,X9,X3) = 0sf3(X1,%X5,X3), are the extension of the constraifi4). The terms propor-
(1+Q2+2Q3)3 2

tional to §3 can balance the terms Wltﬁ, and a clustering
point processes with a number density higher than in the
) ) Gauss-Poisson process is possible. Moreagers not con-
and the correlation functiong, equal zero fom=4. The  gyained to positive values anymore. Hence, already by in-
simulation procedure for the three-point Poisson cluster procludmg three-point correlations, a point process model with a
cess is described in Appendix B 2. two-point correlation functior¥, having a zero crossing be-
comes admissible. This answers affirmatively the question in
B. Constraints on g, &,, and &, [60], whether there exists a general three-point cluster pro-
cesses with a negative second moment. However, in the
three-point Poisson cluster process discussed in the preced-
ing section,£,=0 is required illustrating that the three-point
Poisson cluster processes form only a subset of all possible
three-point processes.

(34)

By the definition of the three-point Poisson cluster pro-
cess, the probability densitiégs=0, f;=0, andf2 )=0 and
consequenthyé,(r)=0 for all r, as well as¢;=0. This is a
generic feature of Poisson Cluster processes.

The Gauss-Poisson process, defined through the trunca-
tion of the cumulant expansion after the second term, is
equivalent to the two-point Poisson cluster proceses Sec. C. The n-point Poisson cluster process
1B). Unfortunately, this equivalence does not hold for the It is now clear how to construct the.point Poisson clus-

higher n-point processes anymore. The general three-poinfer process. Letj,,, be the probability of havingn points per
process is defined as point process with a factorial cumulard)ster WithS" _ gm=1;

expansion truncated after the third term. Proceeding similar
to Sec. lll A, necessary conditions for the existence of such a j,(Xq, . .. X|X)=0n(X) °(X—X1) fn(Xz, . . . Xp|X)N!
point process can be derivgdompare with Eq(11)] as (40
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determines the distribution of thepoints inside the cluster VI. RANDOM FIELDS VS POINT PROCESSES

(f1=1). As above thé , are assumed to be symmetricinall - A random fieldu(x) is in the simplest case a real-valued

their arguments, and far>m function of R [31]. In cosmology the initial mass-density

field is often modeled as a Gaussian random fiskk, e.g.,

") [2,61]). The nonlinear evolution of the density field unavoid-

fn’ (Xg, . !Xm):ﬁRdde+1' o ﬁHdan ably introduces higher-order correlations. A random field
‘ ‘ u(x) is stochastically characterized by its characteristic func-

X (X1, oo X Xme1s -« Xn)s tional (e.g.,[62])
(41)
dYv]=E exp‘ideXU(x)u(x)] , (44

andf,=f{" Inserting Eq(40) into Eq.(28) and after some N _ o
algebraic manipulations one can compare term by term witivhere i denotes the expectation value over realizations of

the factorial cumulant expansidi) of the PG functional, ~ the random fieldi. In close analogy to the expansiohs) of
the characteristic function of a random variable in terms of

" cumulants, one obtains the expansion of the characteristic

functional
0=0p 2 M -
In®Y[v]= 2, — [ dxg- J dXnCh(Xy, - -+ Xn)
Ko, I [m n=1 N JRd RY
Xy, oo X = Q—kp mz,k ( I()qu(km)(xl, X)), Xv(Xq) -+ v (Xy) (45)

(42)  in terms of n-point cumulantscy(Xy, . . . X,). Here cj(x)
=E"[u(x)]=u is the mean value. The correlation function

with k<n, and£,=0 for k>n. The statistical properties of of the field is
this n-point Poisson cluster process are now completely
specified by the correlation functiordg with k<n and the
mean density. Equationg42) and the normalization of the
fm can be used to determine tlig as well asg, and qp, o _ ) )
from given correlation functions,, and the number density and similar for higher-order correlation functiotsee, e.g.,
0. A simulation algorithm similar to the one described in [62,63). The well-known characteristic functional of the
Appendix B 2 can be constructed. Gaussian random field reads

Co(Xq1,Xp) EY
£(x, %p) = Zglz 2) _ [U(Xuiiu(xz)]_L (46)

u _ T
D. The generaln-point process In v ] IfRddxle(xl)

The generah-point process is defined as the point process
resulting from the factorial cumulant expansion truncated af- - zf ddxlf L OX2C2(X1, %)V (X1)v (X2),
ter thenth term. Proceeding similarly to Sec. lll A one ar- K K
rives at the constraint equations (47
k with the covariance functionj(x;,X,).
0=p|A |+ 922 |A]| A Ez(Al AN(Zzi—1)+ - The characteristic functional of a point process is defined
i=1 by
I
+ > IAlIAL]- A ®[h]=E| ex if N(dx)h(x)} |, (48
nt i s 1 n-1 R
_ : ; —rdh
XE(ALAL . A Nz —1) (7 —1). and the relation to the PG functional <_E[h]—G[e' ]. An
1 n-1"""11 n-1 expansion into cumulants(Xy, - .. %) is also possible,
(43

©° sk

In®[h]= >, '—J dx1-~-J AXCil( Xy, - -+ X
It is now possible to compute the constraints for theoint =1 k! e R
process, in close analogy to the three-point process in Sec. Xh(xy)- - -h(xo). (49)
V B. Referencd 60] gave necessary and sufficient conditions
for the existence of a generalized Hermite distributionThe cumulantscy(-) should not be confused with the
(closely related to thisi-point process They discuss the factorial cumulants(-).
constraints for a slightly different expansion of the PG func- o
tion. Unfortunately, the transformation of their expansion to A. A theorem of Marcinkiewicz
the expansion in terms of correlation functions is as tedious A theorem of MarcinkiewicZ64] states that if the char-
as the direct calculation of the constraints. acteristic functionp(s) of a random variablésee Appendix
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A) is the exponential of a polynomial with finite degree from analytical calculations with the observed correlation
larger than 2, then the positive definiteness of the probabilitfunctions in the galaxy distribution.
distribution is violated(see, e.g.[65-67]). A generalized Clearly the question arises, what is wrong with the simple
Marcinkiewicz theorem for characteristic functionfi8,69 picture that one starts with a Gaussian random field and
tells us that this expansion has to be either infinite or a poly~Poisson sample” it to obtain the desired point distribution.
nomial in h(x) [or v(x)] of degree less than or equal to 2. The answer is that a Gaussian random field is an approxi-
This directly applies to the expansion of the characteristianate model for a mass density field only if the fluctuations
functionals of a random fieldb"[v] and a point process are significantly smaller than the mean mass density. Other-
®[h] in terms of cumulants. wise negative mass densitiéise., negative “probabilities”
However, for a point process one can see that the exparfer the Poisson samplingvould occur. Only in the limit of
sion of the PG functional in terms dhctorial cumulants  vanishing fluctuations a Poisson sampled Gaussian random
Cpi(+) [or correlation functiong(-)] allows a truncation at ~ field becomes a permissible model. However, in this limit
a finite k>2. As long as constraints on the density and theone is left with a pure Poisson process.
correlation functions are fulfilled, the point process is well
defined. Although the PG functional was used mainly in thev|l. MODELS FOR STRONGLY CORRELATED SYSTEMS
context of discrete events, it seems worthwhile to consider ]
the characterizations of random fields with factorial cumu- N the Secs. Il and V several types of point processes
lants. were discussed, all featuring a truncated factorial cumulant
Another systematic expansion is provided by the Edge&XPansion. As argued at the beginning of Sec. V, such a
worth series. It was successfully applied in cosmology tofruncation is feasible for t_he matter.dlstnk_)utmn in the Uni-
quantify the one-point probability distribution function for Verse, as long a,(r)<1, i.e., for points with large separa-
the smoothed density field on large scal@§]. Recently, tions. Mamly_ two approaches have been followed to model
authors of Ref[71] showed how to use the truncated Edge-the galaxy distribution also on small scales wit(r)>1.
worth series to generate realizations of non-Gaussian randof'€ hierarchical models are briefly discussed in the follow-
fields with predefined correlation properties. The truncatedNd Section and in Sec. VII B an extension of the halo model
Edgeworth series also violates the positive definiteness of thié Presented.
probability distribution, but Refl71] restores the positivity,
reintroducing higher correlations, leading to a “leaking” A. Hierarchical models

into higher correlations. ) In cosmology one often starts with a scale-invariant cor-
The cumulantsc, and the factorlial cumulants;y of & rejation functioné,(r)er ~* and assumes some closure rela-
random variable are related loy==_;s,(k,I)cyy [see EQ.  tions for &,. Especially the hierarchical ansatZ,
(A15)]. Looking at the Poisson cluster processes discussed in QnSreedl"1&, was extensively studied(e.g., [72—
the preceding sections, one observes that such a relati%,8,75,9, and more recenf76,77)). Authors of Ref.[8]
must not hold between the cumulants and the factorial cumugiscuss conditions for the coefficien@®, such that the ex-
lants of a point process. As an example, consider the thrégsansion of the PG functions in terms of the count in cells
point Poisson cluster process withy(-)=0 foralln>3. A ¢onverges. In this case the count in cells uniquely determine
finite c(3)(-) leads to nonzera,(-) for all n (see Appendix the point process. As illustrated in Sec. VIII with the log-
C for details) normal distribution, a nonconverging expansion does not
necessarily imply that the stochastic model is not well de-
B. The Poisson model fined. It only implies that such a point process model is not

In cosmology the point distribution is often related to the COmpletely specified by its correlation functions. For critical

mass density field assuming the “Poisson model.” The valusSystems similar expansion in terms of correlation functions
of the mass density field is assumed to be proportional to thé'® typically divergentsee, e.g.[78]).
local number density, and the point distribution is con- AS another closure relation Kirkwodd9] employed the
structed by “Poisson sampling” the correlated mass densityf°!l0Wing approximation
field. If the mass density field is itself a realization of a _ .3

. - . . = 1+ 1+
random field, the resulting point process is called a Cox pro- Q3(X1,Xp,Xg) = @14 £2(x1 X I 1+ 2%z, %) ]
cess, or doubly stochastic process. Within this model one X[1+&x(X3,%1)] (51
may show that the cumulant§ of the density field are pro-

portional to thefactorial cumulantsc, of the point distri- {0 calculate thermodynamic properties of fluids using the
bution [72,26; c[n]zcﬁpzluz. It is important to notice that Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. This

this relates the characteristic functional of the random fiel {Is%?)urg relfipor:l |shexact for the llf.) g(-jnotrhm?ltrc]i_lstrlbutgmg., di
®Y[v] to the PG functional of the point proce§§h]. For - Empirically however, oné finds that this ansatz 1S dis-

the correlation functions one obtains favored as a model for the galaxy distributig8iL].

En(Xy, oo X)) = ER(Xey « v v Xp)- (50 B. The generalized halo model

In Sec. V several types of Poisson cluster processes were
Hence, this model allows a direct comparison of predictionsonstructed by starting with Poisson distributed centers and
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attaching a secondary point process, the cluster, to eadbrs are given by a correlated point process, typically deter-
point. One can generalize this procedure by considering clusnined from the evolved density distribution. Based on these

ter centers given by already correlated points. One possibilitassumptions one can calculate the correlation functégns
is to iterate the construction principle of the simple Poissorfor the halo mode[21,17]. Both theoretical models as well

cluster process leading to timeth order Neyman-Scott pro-

as observations suggest that dark matter caustics lead to sub-

cesse$5]. If one is only interested in the first few correlation structure inside halog83]. Also recent high-resolution
functions, a full specification of the point process is not nec-N-body simulations suggest that 15-40 % of the simulated

essary. Within the halo mod&ee, e.g[21,17,82,18-2) it

halos show a significant amount of substruct(see[84],

is specifically easy to calculate the correlation functions. Theand references therginTo generalize the halo model, the
difference in the Poisson cluster processes discussed prewerrelations inside the halo are taken into account.
ously is that the cluster centers now may be correlated them- Consider the expansion &.[h|y;]—1 in h,

selves. A major physical assumption entering is that the
properties of the clusteralog areindependentf the po-
sitions and correlations of the cluster centers.

Consider a point process for the cluster centers, the par-
ents, specified by the PG function@l[ h]. Independent of
the distribution of the centers, a cluster with a PG functional
G.[h|y] is attached to each centgrThen the PG functional
of this cluster process is given by the “folding” of the two
PG functionald26]:

Glh]=G[Glh]-]]. (52

Using expansiori7), these PG functionals are given by

S 2 ()
In Gp[h+1]=mE:1 HJRddyy . fRddymfnﬁ’ (Yoo - Ym)

Xh(yy)---h(ym), (53

Golhlyi]-1=

| o oaly)

1
i Eﬁﬁddxl ﬁﬁddxzh(xl)h(xz)
X[epay(Xalyi) ey (Xal i) + €2y (X1, %2l ¥i) ]

1
+ ﬁfﬁddxlfRddxzJRddX3h(X1)h(X2)h(X3)

X[ ey (Xalyi) ey (Xalyi) Cay(Xalyi)
+3Cp21 (X1, %ol Yi) Cpay (X3l Y1)

+C31(X1,X2,Xaly;) 1+ O[ h*]. (56)

After inserting this expansion into E¢55) and collecting

terms proportional to powers @fh(-), with the mean num-

1
In Gc[h+1|y]zz _|f ddxl' "fddxnc[n](xla ...,xnly)
n=1 N Jr R

Xh(x1)- - -h(xp), (54)
whereg, is the number density and t&” are the correla-
tion functions of the parent process. Ttyg( . . .|ly) are the
factorial cumulants specifying the point distribution in a
cluster, conditional on the cluster centerc;(x|y) is the
halo profile, with the mean number of points per halo

= [dxcy;(x]y). Thecp,, n=2 quantify the halo substruc-
ture. A halo without substructure is an inhomogeneous Pois-
son process, and completely characterizeccy(x|y) and
C=0, n=2. Combining Eqs(52) and(53)

£3(Xq,X2,X3) =

v 9 (®)
In G[h+1]—mZ:1 ﬁfRddY1‘ - fRddymﬁm (Yir - Ym)

m

xI1 (Gdh+1ly]-1), (55

one immediately recovers the PG functional of the Poisson
cluster process Eq18) by setting&P=0 for m=2 (&P
=1).

C. &, and &; in the generalized halo model

In the standard halo model the clusters are simply mod-
eled by an inhomogeneous Poisson process, whereas the cen-
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ber densityp =
sion (7) and read off the correlation functions;

Qpi, One can directly compare with expan-

1
Ex(Xq,Xp) = _ZJ ddyl[c[l](xl|y1)c[l](X2|yl)
Qpu~/ R

+C2)(X1 Xa|y1)]
—1 (p)

| Aya| Ay2837(y1.Y2)
w?lr R

(57)

X Cppy(X1ly1)cpay(Xaly2),

: f
dyalcpay(Xalys) ey (Xalys)
leus d [1] [1]

X ¢p17(Xaly1) +3¢p13(X1]Y1) 12y (X2, X3 Y1)
+Cp33(X1,%2,X3|y1) ]

3

+ J V1 j A2 (y1.y2)

Qp:u*3
X [0[1](X1|Y1)C[1](X2|Y2)C[1](X3|Y2)

+¢113(X1]Y1) €2y (X2, X3Y2) ]

1
+; W fRddyz fRddys
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><§gp)(y1aY2vys)C[l](X1|y1)C[1](X2|Y2) e CRTTTTTITE TR ]
X Cray(XalYa)- (58) IR ]
084! ! —
Similarly the highem-point correlation functions can be cal- [ ‘ |
culated. HAW 1
In current calculations of the two- and three-point func- /:;0.6 __':E N 7]
tions for the halo mod€gl17,82 the galaxies inside the halos — - :f \ '-, .
are modeled as an inhomogenedfisite) Poisson process. Q*O 4 L i '-,:' \ ]
The halo profilec;;;(x|y) is conditional on the cluster center CLh '”' \ -
y, but no substructure inside halos is present, ¢g;~=0 for ¥ ) ]
n=2. In this case the above expressions simplify to the re- 0.2 VY _
sult of [21]. I (AANY 7
The simulation of such a point distribution can be carried e -
out in a multistep approach similar to the simulation of the 00' = '1 = 'é' = '5‘ = '4' 5
Gauss-Poisson procegéppendiy. First we generate the %
correlated cluster centers, e.g., by using the Gauss-Poisson

process or a low-resolution simulation, and then attach a sec- FIG. 4. Probability density of the log-normal distributi¢solid
ondary point process either modeled as an inhomogeneolise, x=0 ando=0.8) and a probability density from the family of
Poisson om-point Poisson cluster process. distributions with the same momentdashed line,e=0.5 andk
=1).
D. Halo substructure

. . : . : momentsk[N(N—1)- - - (N—n+1)] should be finite in any
The following dIS.CUSSIOI'] shall serve mainly as an HISS bounded domain. For the-point Poisson cluster processes,

:_rauon fatshto how ltot.mcc;rportate h_?loksubs::]qcture In Clalct'r:aaiscussed in the preceding sections, at the magsints re-
flo”ns orthe correta_l lon Tunc |or:j. _c;h eipl mgsﬁsmp €. "M€side in a cluster, which are distributed according to a Poisson
f owing assump :;)ns a(rje mafe.h € halo r;rc;] lQ]h(XJy) dprocess with constant number density. Clearly, in such a
=c(Ix=y)) f's Independent of the mass of the halo, andg; e sjtuation both assumptions are satisfied. However,
Cray(X1,%2|y) factors into cyy(xa|y)cpa(Xaly) 7(|X1_)§2|)’ even for physically well motivated models, a convergence of
as expected for locally isotropic substructures. P& (k)

37 2(p) vy the expansion of the PG functional may not be guaranteed,
= [[dx/(27)°]EP(|x])e ™" * be the power spectrum of the

~ although the point process itself and the correlation functions
spatial distribution of the halo centers, and ¢gf;(k) and  are well defined.

¥(k) be the Fourier transform afjy; and y, respectively. Perhaps the best known example of a probability distribu-
The power spectrum of the galaxy distribution in the genertion that is not fully specified by its moments is the log-
alized halo model is then normal distribution. The probability density of a log-normal
random variable is given by

2m)% 2m)8
=27 40012+ 2T 0 20k . (X2
P # p(x)= exr{ —— (60
(277)3 - ~ OX\ 2 20
+20 [ k) kKD (59
Qpm

with parametergandaz, the mean and variance ofxnThe
- kA2 .
The first two terms are the result of R€21], the additional TnOTSEEtSVESl\?/erEq).((A]r?]i(;nmnS—) eﬁﬁ?”ﬁnraz)t a;ireti erIL c!“e N
term accounts for a halo substructure and involves afoldin%!)S ed, however, expansidro) of the characteristic unctio
~ T ) o . not convergent. And indeed R€i85] showed that the
of ¢4y with y in Fourier space. Similar expressions can beprobability density
derived from Eq.(58) for the bispectrum. Quantitative pre-
dictions for the galaxy distribution, similar to the investiga-
where 0<e<1 andk is a positive integer, has moments

tions of [17], will be the topic of future work.

Our investigations rested on the assumption that the coiidentical to the moments of the log-normal distribution. A
relation functions exist and that the expansions of the PGomparison ofp(x) andp’(x) is shown in Fig. 4.
functional converge. In this case the PG functional, and con- A log-normal random fieldan “exponentiated” Gaussian
sequently the point process, is determined completely by theandom field is positive at any point in space, and a point
correlation functions. The first assumption, the existence oprocess can be constructed using the value of the field as the
the correlation functiongthe factorial cumulanis does not local number density. The multivariate log-normal distribu-
impose dramatic restrictions for the models. In classical systion, and the log-normal random field inherit the behavior of
tems the mean number of poiriEN] as well as the factorial the moments of the simple log-normal distribution. The point

p’(x)= p(x)[ 1+ esin

27k —
—Z(In X—X)
g

VIlIl. SOME OPEN PROBLEMS
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distribution obtained from the *“Poisson sampled” log- a Gaussian random field. Non-Gaussian features in the
normal random field is not characterized completely by itspresent day distribution of mass may be attributed either to
correlation functions as already discussed8]. See also the nonlinear process of structure formation, or to a non-
Ref. [86] for a similar approach towards this “log-Gaussian Gaussian primordial density field. Observations of the large-
Cox process.” scale distribution of galaxies however provide us with a dis-
In a Poisson cluster proceéand also in the halo model  tripution of points in space. The process of galaxy formation
the pOint distribution inside the cluster is SpeCified indepenmay introduce further non_Gaussian features in the ga'axy
dently Of the diStribution Of the centers. ThIS Constructivepoint distribution. In this paper a direct approach towards the
approach, and the truncation of the moment expansion, guagharacterization of this point set was pursued. The statistical
antee the existence of these processes. A characterizatigpoperties of the point distribution can be specified by the
lated to the generai-point process considered in Sec. V D, Gaussian random field, a Gaussian point distribution, the
is discussed in Re{60]. Also well-defined point processes Gauss-Poisson point process, was constructed. This random
that do not impose such a truncation of the moment €Xpamoint set is fully specified by its mean number dengitythe
sion are possible. A simple model is the line-segment Protwo-point correlation functioré,(r), and &,=0 for n>2.
cess used in Sec. IV A, where the number of points per Clusrmportant constraints o and &(r), not present for the
ter is a Poisson random variable. Attempts towards a generg 5.,ssian random field, show up. NameJy(r)=0 for all r,
characterization of point processes were conductefBBy  and the variance of the number of points must not exceed
89], and partially succeeded for the case of infinitely divis-ice the value of a Poisson process. The violation of these
ible point processes. o o . constraints indicates non-Gaussian features in the galaxy dis-
One can show that any regular infinitely divisible point yihytion. The equivalence of the Gauss-Poisson point pro-
processes is a Poisson cluster procesg., [26], regular  cegs with a Poisson cluster point process leads to a simple
means that a cluster with an infinite number of points hagjmylation algorithm for such a point distribution. Using the
probability zerg. An infinitely divisible point processes may j fynction, higher-order correlations were detected in both a
be constructed as a superposition of any numbend#pen-  1y_dimensional example and the galaxy distribution. The
dent point processes. It is interesting to note that the |°9'comparison with the Gauss-Poisson point process allows us
normal distribution is infinitely divisiblg90], although the {4 quantify the level of significance of these non-Gaussian
expansion of the characteristic function in terms of momentgg 5t res. Using these methods R3] could show that the
(A5) does not converge. . o distribution of galaxy clusters may not be modeled by a
On small scales the galaxy correlation function is scalegyss-Poisson process at a significance level of 95%.
invariant:gzocr‘f. If a cutoff at some large scales is present,  The formal approach based on the probability generating
and the constraints for the density and the correlation funcynctional facilitated the definition, the characterization, and
tions are satisfied, a model based on a Poisson cluster prgse simulation of the Gauss-Poisson point process. The in-
cess becomes feasible. Unfortunately, the superposition Qfiysion of higher-order correlation functions was straightfor-
independenpoint processes, as implied by the infinite divis- yarq, leading to the-point Poisson cluster processes. Both
ibility of a Poisson cluster process, does not seem 10 be ge definition and the simulation algorithm were detailed for
good model assumption for the interconnected network ofne three-point Poisson cluster process. The Gauss-Poisson
correlated walls and filaments, as observed in the galaxypoint process and the two-point Poisson cluster process are
distribution(e.qg.,[91]). The correlation functions for the gal- equivalent. However, this is not true for thepoint casen
axy distribution are close to zero for large separations, but, » anymore. The set of genempoint processes, resulting
from current observations one cannot infer a definite cutoff¢om 3 ‘truncation of the cumulant expansion of the PG func-
As discussed in Sec. Ill C for the Gauss-Poisson process, thgna| after thenth order, contains al-point Poisson cluster
large-scale behavior of the correlation functions plays an IMprocesses as a true subset. This was discussed for the three-
portant role in the construction of the Poisson cluster POpoint case explicitly. Although models based on thpoint
cesses. Moreover, the dynamical equations governing thgyisson cluster process are not the most general ones, they
evolution of large-scale structures are nonlds&e[92] and  ¢oyer a broad range of clustering point distributions. A Pois-
references therejn Therefore, it seems worthwhile to con- g4 cluster process can be simulated easily and is especially
sider also point process models that are not infinitely dIVIS-he|pfu| for comparing statistical methods and estimators.
ible. Unfortunately, beyond infinitely divisible point pro- The inclusion of more and more points in the randomly
cesses it is not clear what kind of properties the correlatiorb|aced clusters is the only one way to extend the Gauss-
functions have and especially what kind of additional con-pgisson point process into the strongly-correlated regime. In
straints arise. the halo model one allows for correlations between the clus-
ter centers. Typically the hal@.e., the galaxy clusteris
modeled without substructure. Again using the PG func-
tional, the influence of correlations inside a halo on the
The Gaussian random field, fully specified by the meam-point correlation functions of the resulting point distribu-
and its correlation function, is one of the reference modeldion could be calculated.
employed in cosmology. Typical inflationary scenarios sug- All the models discussed above offer some insight into
gest that the primordial mass-density field is a realization otertain aspects of the clustering of the galaxy distribution. As

IX. SUMMARY AND CONCLUSION
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argued in the preceding section, point process models that gk

o S .  de(s)
are not decomposable into independent point processes seem m=(—1)" ——— (A4)
more appropriate. Unfortunately, even basic mathematical ds* s=0

questions concerning tieomplete characterization of these _ _ _ _ _
models in terms of moments and beyond are still open. By inverting one obtains the expansion gfs) in terms of
moments,
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FUNCTIONS OF RANDOM VARIABLES

A short review dealing with the characteristic and prob- L
ability generatingfunction of a random variableand their P(1+t)=1+ E k_lm“‘]’ (A8)
expansions in terms of moments, cumulants, factorial mo- k=11
ments, and factorial C‘%m“'a”FS IS given. _Th|s appendlx_ 'Sh terms of the probabilitiep,. P(1+t) serves as the gen-
meant to serve as an illustration highlighting the analogies

: I . erating function for the factorial moments;,; . Similarly
between expansions of the probability generafungctional o . (k] 2
and the probability generatinyinction (see alsg[26]). To the product densitieactorial moment measurefor a point

. : L {rocess can be derived as functional derivati\feechet de-
keep this summary simple it is assumed that the momen : - . .
rH/anves) of the probability generating functional.

etc. exist and the expansions converge. For a more thoroug Using P(e"') = o(t) one can derive the relation between
treatment of characteristic and generating functions see, e.qﬂ P
oments and factorial moments

[94,95,61.
The moments of a random variabtavith probability dis- = (is)k ® (is)t &
tribution F are defined by - 2 = is) — R
®(s) go M= P(eP) 1+;0 v gl M So(t,K),
(A9)
m=E[x]= f dF(x)xX. (A1)
where
If nis a discrete random variable, especially if it is integer k t
valued and greater than or equal to zero, it is often more Sy(t, k)=, (—1)'“'—|| (A10)
convenient to work with the factorial moments =1 (k=D

% are the Stirling numbers of the second kind, the number of
m[k]:E[n[k]]:J dF(nnK=> p.nl¥,  (a2) partitions which split the sefl, . .. ,t} into k pairwise dis-
n=0 joint nonempty setgsee, e.g.[96]). Sinces,(t,k)=0 for k
>t, which is also respected by expressi@i0), one finally
wheren®=n(n—1).--(n—k+1), andp,, is the probabil- arrives at
ity that the random variable takes the valueSimilarly, for

point processes it is more convenient to work with product !
densities(or factorial moment measuresnstead of moment mt:gfl Sa(t,K)mpyg . (A11)
measures.
. The characteristic funCtiOIp(t), te R of a distributionF One considers not Only the momen]]ﬁ of a random vari-
is defined as able, but also the cumulantg defined by
(9= dF(x)e (A3) 5 (1) 5 (i)
® » ex kgl G| =1+ k; 0 M= e(s). (AL2)

and serves as a generating function for the moments. ExGlearly, Ing(s) serves as a generating function for the cumu-
panding the exponential one can easily verify that lantsc,. Perhaps the best known cumulant is the variance
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C,=o?=my,—m?. A13

2=~ (A13) C2=f ,dxéa(|x))  and C3=f ddxfddy§3(0,x,y).
- . . . R R R

Similarly, for non-negative integer valued random variable (B1)

the factorial cumulantsy; are defined by ) o )
Using the normalization of, and f; one obtains

=1+§1Hmm:P(1+t). (A14) Gm 3(C,0—C30?)
©(6-3C,0+Cq0?)

Hence, INP(1+t) serves as the generating function of the )

factorial cumulantgy; . The correlation functiong, used in B Cso
cosmology are the densities of the normalized factorial cu- Us= 6—3C C.02)’
) . ( 20+C30°)
mulant measures of a point processes, corresponding to the
factorial cumulantscy; of a discrete random variable. Set- o 5
ting t=e'S—1 in Eq. (A14) and comparing term by term Qp=75 (6=3C0+Cs0%),
with Eq. (A12) one obtains the same relation between cumu-
lants and factorial cumulants, as between moments and fac- q1=1—0,— 03, (B2)
torial moments, o
’ resulting in
c=2, so(k,hcq. A15 1
K Izl (ke (A19) fo(X1,X) = =—=— fz(xl,xz)_efddX3§3(X1,X2,X3) ,
C2 C3Q R
APPENDIX B: SIMULATION ALGORITHMS ) 1
57 (X, X0) = = | dX3&3(Xq,X5,X3), B3
1. The Gauss-Poisson point process 2 (X1%2) CsJpe 33(X1. %2, %3) B3)

As discussed in Sec. Il B every Gauss-Poisson process is 1
a Poisson cluster process and, therefore, can be simulated f3(X1,X0,X3) = C—§3(xl,x2,x3).
. . . . 3
easily. For a given number densityand a two-point corre-
lation functioné&,(r) fulfilling constraints(12) and (13), re-  Since ¢, and theq,, are positive numbers, the constraints
alizations of the Gauss-Poisson process can be generatedp?<C,0<2+C,02/3 must be satisfied and the relation

straightforwardly. With the normalization C, £,=Cof y+ ng(fz_f(z?’)) holds. The algorithm now reads
= [radXx&,(|x]) and [ adxf(|x|) =1 one calculates the quan- a5 follows.

tities needed for the simulationf(r)=¢£x(r)/Cy, qs (1) First generate the cluster centers according to a Pois-
=0C2/(2-0Cy), q1=1-0qp, and gp=0(1-02C>/2).  son distribution with number densig,.

Constraint(16) now can be written a€,0<1. The simula- (2) For each cluster centerdraw a uniform random num-
tion is carried out in two steps. berzin [0,1]. If z<q,, then keep only the point. If g,

(1) First generate the cluster centers according to a Pois=2<0d11 02 then keep the point and additionally chose a

son distribution with number densiy, . random point according t.o the probability densfy If q4
(2) For each cluster center, draw a uniform random _“qugz then keep_the pow_»t,(g?ose a sec_ond p_omt accord-
numberz in [0,1]. If z<g;, then keep only the point. If ing to the probability density3™, and a third point accord-

z=q, then keep the point and additionally chose a random N9 t© fs.

direction on the unit sphere and a distamceith the prob- ]

ability density f and place the second point according to APPENDIX C: CUMULANTS AND FACTORIAL

them. CUMULANTS

Consider expansiofi7) of the PG functional in terms of

To get the correct point pattern inside a given window, .
J P b g t%le factorial cumulants(xy, - . . X)

one also has to use cluster centers outside the window

ensure that any possible secondary point inside the window *q
is included. ING[h]= 2, —| dx;- f dXCig (Xas - - - X
k=1 K!'J e Rd
2. The three-point Poisson cluster process X(hy—=1)---(h,—1)

In the following, the algorithm for the simulations of the >

three-point cluster process is given. Expressi¢d4) to- _ _f f

gether with the normalization conditions fés and f; serve kZl k! Rddxl Rddxkc[k](xl’ Fe X

as a starting point. An algorithm similar to the one for the "

Gauss-Poisson process described in Appendix can be con- K K—n

structed. X1 (=D +r§1(_1) 2 by, -
Given the number density, and the two- and three-point

correlation functions¢, and &;, one defines (Cy

=
>
N

1edk
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with h;=h(x;) and Jﬁ is formed by the ordered subsets of

{1, ... k} with n=<k distinct entries. Hence, a subdat J
consists out ofn distinct numbers{l,, ... |} with I;
<..-<l,, eg, 33={{1,2,{1,3,{2,3}. Using ®[h]
=G[€e'"] one obtains

1
In (I)[h]zkz,l prddxl- . fRddxkc[kl(xl, . ,xk)[ (—1)K

k
2 (DX exidi(hy +h.n)]] :

led,

-m 0
|

m=1 M| 1

The expression inside the brades - ] in Eq. (C3) equals

fRddxl~ . fRddxmck(xl, oo Xmheochy. o (CH)

— RdXm- .. fRdkaC[k](Xl, R ,Xk)[

PHYSICAL REVIEW E 64 056109

(C2

In the m sum the first term wittm=0 equals— (— 1), can-
celing with the (1) inside the braces,

o) .m k
> r'n—| > (DY (h.l+-~+h.n)m}

m=1 s n=1 'EJﬁ

1 k
2 HfRdXm. . fRdkaC[k](Xl, P ,Xk){ nzl (—1)k7n Ek (h|1+ o +h|n)m]]. (C3)

led,

cumulants. However, there is no straightforward way to sim-
plify this expression. Above all the theorem of Marcink-
iewicz demands that as soonlas 2, thek sum always has
to be an infinite sunisee Sec. VI A Hence, the cumulants
ck(-) depend on an infinite alternating sum of the factorial

This fixes the relation between the cumulants and factoriatumulantsc(-), and vice versa.

[1] Statistical Physics and Spatial Statistics: The Art of Analyzing

and Modeling Spatial Structures and Pattern Formatiea-

ited by K. Mecke and D. Stoyan, Lecture Notes in Physics, No.

554 (Springer-Verlag, Berlin, 2000

[2] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astro-

phys. J.304, 15 (1986.
[3] A. Dekel and O. Lahav, Astrophys. J520, 24 (1999.
[4] P. Peebles, Astrophys. J. LeB44, L53 (1989.
[5] J. Neyman and E. L. Scott, J. R. Stat. SP@, 1 (1958.
[6] R. M. Soneira and P. J. E. Peebles, Astrophys83).845
(1978.
[7] S. D. M. White, Mon. Not. R. Astron. S0d.86, 145(1979.
[8] R. Balian and R. Schaeffer, Astron. Astrophg&0, 1 (1989.
[9] I. Szapudi and A. S. Szalay, Astrophys408 43 (1993.
[10] B. Widom and J. Rowlinson, J. Chem. Ph$&, 1670(1970.
[11] A. J. Baddeley and M. van Lieshout, Ann. Inst. Stat. MdfR.
601 (1995.
[12] C. N. Likos, K. R. Mecke, and H. Wagner, J. Chem. PH@2
9350(1995.

and its Applications2nd ed.(Wiley, Chichester, 1995

[16] O. E. Buryak and A. G. Doroshkevich, Astron. Astrophys.
306, 1 (1996.

[17] R. K. Sheth and B. Jain, Mon. Not. R. Astron. S@85, 231

(1997.

[18] C.-P. Ma and J. N. Fry, Astrophys. 343 503 (2000.

[19] J. A. Peacock and R. Smith, Mon. Not. R. Astron. S8t8
1144(2000.

[20] R. Scoccimarro, R. K. Sheth, L. Hui, and B. Jain, Astrophys. J.
546, 20 (2000.

[21] R. J. Scherrer and E. Bertschinger, Astrophys381, 349
(1991.

[22] R. L. Stratonovich,Topics in the Theory of Random Noise
(Gordon and Breach, New York, 1963/0ol. 1.

[23] S. K. Srinivasan,Stochastic Theory and Cascade Processes
(American Elsevier, New York, 1969

[24] J. P. Hansen and I. R. McDonnal@heory of Simple Liquids
(Academic Press, New York, 1986

[25] D. Ruelle, Statistical Mechanics: Rigourous ResuliBen-
jamin, Amsterdam, 1969

[13] A. Baddeley, W. Kendall, and M. Lieshout, Research report[26] D. J. Daley and D. Vere-JoneAn Introduction to the Theory

(unpublished

of Point ProcesseéSpringer-Verlag, Berlin, 1988

[14] W. S. Kendall, M. N. M. van Lieshout, and A. J. Baddeley, [27] J. E. Moyal, J. R. Stat. Soc. Ser. B. Method20, 36 (1958.

Adv. Appl. Probab31, 315(1999.

[15] D. Stoyan, W. S. Kendall, and J. Meck&tochastic Geometry

[28] A. Soshnikov, Russ. Math. Surveyss, 923 (2000; e-print
math.PR/0002099.

056109-16



CONSTRUCTING, CHARACTERIZING, AND.. ..

[29] D. S. Newman, J. Appl. Probal, 338(1970.

[30] R. K. Milne and M. Westcott, Adv. Appl. Probakt, 151
(1972.

[31] R. J. Adler,The Geometry of Random Fiel@#/iley, Chiches-
ter, 198).

[32] T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay,
Nature(London 343 726 (1990.

[33] H. J. Moet al, Astron. Astrophys257, 1 (1992.

[34] J. Einastoet al,, Nature(London 385, 139(1997).

[35] A. J. Baddeley and B. W. Silverman, Biometrid®, 1089
(1984.

[36] C. Arns, M. Knackstedt, W. Pinczewski, and K. Meck-
published.

[37] K. R. Mecke, T. Buchert, and H. Wagner, Astron. Astrophys.
288 697 (1994.

[38] K. Mecke, inStatistical Physics and Spatial Statistics: The Art
of Analyzing and Modeling Spatial Structures and Pattern
Formation (Ref. [1]).

[39] M. Kerscher, inStatistical Physics and Spatial Statistics: The
Art of Analyzing and Modeling Spatial Structures and Pattern
Formation (Ref. [1]); e-print astro-ph/9912329.

[40] S. F. Shandarin, Sov. Astron. Le&, 104 (1983.

[41] J. D. Barrow, D. H. Sonoda, and S. P. Bhavsar, Mon. Not. R
Astron. Soc.216, 17 (1985.

[42] K. Schladitz and A. Baddeley, Scand. J. S&&, 657 (2000.

[43] E. Groth and P. Peebles, Astrophys217, 385(1977.

[44] J. N. Fry and P. J. E. Peebles, Astrophy2211, 19 (1978.

[45] I. Szapudi, A. S. Szalay, and P. Boschan, Astrophy£90,
350(1992.

[46] M. N. M. van Lieshout and A. J. Baddeley, Statist. Neer-
landica50, 344 (1996.

[47] M. Kerscher, Astron. Astrophy236, 29 (1998.

[48] M. Kerscheret al., Astrophys. J513 543(1999.

[49] P. Hertz, Math. Ann67, 387 (1909.

[50] E. Thannes and M.-C. van Lieshout, Biom. 41, 721(1999.

[51] A. J. Baddeley, M. Kerscher, K. Schladitz, and B. Scott, Stat-

ist. Neerlandic&b4, 1 (2000, e-print math.PR/9910011.
[52] W. Saunder®t al, Mon. Not. R. Astron. Soc317, 55 (2000.
[53] M. Kerscheret al., Astron. Astrophys373 1 (2001).

[54] M. Kerscher, I. Szapudi, and A. Szalay, Astrophys. J. Lett.

535, L13 (2000.

PHYSICAL REVIEW B4 056109

Chemistry(North-Holland, Amsterdam, 1981

[63] S. Borgani, Phys. Re251, 1 (1995.

[64] J. Marcinkiewicz, Math. Z44, 612 (1939.

[65] H. Richter, Wahrscheinlichkeitstheorje2nd ed. (Springer-
Verlag, Berlin, 1966

[66] R. Pawula, Phys. Rew.62 186 (1967.

[67] 1. V. Linnik and I. V. Ostrovskii, Decomposition of Random
Variables and Vectors(American Mathematical Society,
Providence, Rhode Island, 1977

[68] D. W. Robinson, Commun. Math. Phyk, 89 (1965.

[69] A. Rajagopal and E. Sudarshan, Phys. Rext0A1852(1972.

[70] R. Juszkiewiczt al, Astrophys. J442 39 (1995.

[71] C. R. Contaldi and J. Magueijo, e-print astro-ph/0101512.

[72] P. J. E. PeeblesThe Large Scale Structure of the Universe
(Princeton University Press, Princeton, NJ, 1980

[73] J. N. Fry, Astrophys. 262, 424 (1982.

[74] J. N. Fry, Astrophys. J. LetR77, L5 (1984).

[75] P. Carruthers, Astrophys. 380, 24 (1991)).

[76] R. Scoccimarro and J. A. Frieman, Astrophys.520, 35
(1999.

[77] F. Bernardeau and R. Schaeffer, Astron. Astropl3¢8 697
(1999.

[78] J. Zinn-Justin,Quantum Field Theory and Critical Phenom-

. ena 2nd ed.(Oxford University Press, Oxford, 1993Chap.

41.

[79] J. G. Kirkwood, J. Chem. Phy8, 300 (1935.

[80] P. Coles and B. Jones, Mon. Not. R. Astron. S@d8 1
(1991.

[81] I. Szapudi, G. B. Dalton, G. Efstathiou, and A. S. Szalay,
Astrophys. J444, 520(1995.

[82] C.-P. Ma and J. N. Fry, Astrophys. J. LeB31, L87 (2000.

[83] W. H. Kinney and P. Sikivie, Phys. Rev. &1, 087305(2000.

[84] Y. P. Jing, Astrophys. B35 30 (2000.

[85] C. Heyde, J. R. Stat. Soc. Ser. B. Methodt8, 392 (1963.

[86] J. Mdler, A. R. Syversveen, and R. P. Waagepetersen, Scand.
J. Stat.25, 451 (1998.

[87] L. P. Ammann and P. F. Thall, Stochastic Proc. Agjl87
(1977.

[88] L. P. Ammann and P. F. Thall, J. Appl. Probab6, 261
(1979.

[89] E. Waymire and V. K. Gupta, Adv. Appl. Probali5, 39
(1983.

[55] M. Kerscher, J. Schmalzing, T. Buchert, and H. Wagner, As-[90] O. Thorin, Scand. Actuarial 8, 121 (1977.

tron. Astrophys333 1 (1998.

[56] I. Szapudiet al, Mon. Not. R. Astron. Soc319, L45 (2000.

[57] S. Bonomettcet al., Astrophys. J419, 451 (1993.

[58] I. Szapudi and E. Gaztanaga, Mon. Not. R. Astron. S0
493 (1998.

[59] J. N. Fry, Astrophys. 279, 499 (1984.

[60] R. K. Milne and M. Westcott, Ann. Inst. Stat. Math5, 367
(1993.

[61] V. Sahni and P. Coles, Phys. R&62, 1 (1995.

[62] N. G. van Kampen,Stochastic Processes in Physics and

[91] J. P. Huchra, M. J. Geller, V. De Lapparent, and H. G. Corwin,
Jr., Astrophys. J., Suppl. S€f2, 433(1990.

[92] L. Kofman and D. Pogosyan, Astrophys.A#12, 30 (1995.

[93] M. Kerscher et al, Astron. Astrophys.(to be publishey
e-print astro-ph/0105150.

[94] E. Lukacs, Adv. Appl. Probal, 1 (1972.

[95] M. G. Kendall and A. StuariThe Advanced Theory of Statis-
tics, 4th ed.(MacMillan, New York, 1977, Vol. 1.

[96] H. S. Wilf, GeneratingfunctionologyAcademic Press, New
York, 1990.

056109-17



