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Constructing, characterizing, and simulating Gaussian and higher-order point distributions
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The definition and the properties of a Gaussian point distribution, in contrast to the well-known properties of
a Gaussian random field are discussed. Constraints for the number density and the two-point correlation
function arise. A simple method for the simulation of this so-called Gauss-Poisson point process is given and
illustrated with an example. A comparison of the distribution of galaxies in the PSCz catalog with the Gauss-
Poisson process underlines the importance of higher-order correlation functions for the description for the
galaxy distribution. The construction of the Gauss-Poisson point process is extended to then-point Poisson
cluster process, now incorporating correlation functions up tonth order. Simulation methods and constraints on
the correlation functions are discussed for ann-point case and detailed for a three-point case. As another
approach, well suited for strongly clustered systems, the generalized halo model is discussed. The influence of
substructure inside the halos on the two- and three-point correlation functions is calculated in this model.
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I. INTRODUCTION

Stochastic models are often used to describe physical
nomena. For spatial structures, two broad classes of stoc
tic models have been established. One approach is base
random fields and the other one on random distributions
discrete objects, often only points, in space~see the contri-
butions in@1# for recent applications and reviews!. Stochastic
point distributions are used to describe physical systems
vastly differing length scales. The physical applications d
cussed in this paper deal with the large-scale structures in
Universe formed by the distribution of galaxies. Howev
the methods are much more versatile.

Models for the dynamics of cosmic structures are of
based on nonlinear partial differential equations for the m
density and velocity field. These models relate the ini
mass density and velocity field, primarily modeled as Gau
ian random fields, to the present day values of these fie
The nonlinear evolution leads to non-Gaussian feature
the fields. However, observations supply us with the po
tions of galaxies in space. To compare theories with ob
vations one has to relate fields with point distributions. Bo
deterministic and stochastic models have been used for
purpose so far~e.g.,@2,3#!.

Pursuing a direct approach, the observed spatial distr
tion of galaxies~galaxy clusters, etc.! is compared to models
for random point sets. Only a few attempts towards a dyna
ics of galaxies as discrete objects have been made~see, e.g.,
@4#!, however, stochastic models are quite common. Follo
ing the works in@5–8#, and @9# a purely stochastic descrip
tion of the spatial distribution of galaxies as points in spa
is given in this paper.

Models for stochastic point processes can be constru
using the physical interactions of the objects, typically lea
ing to Gibbs processes~see, e.g.,@10,11#, and the generali-
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zations in@12–14#!. Another approach to construct point pro
cesses is based on purely geometrical considerations,
points are randomly distributed on randomly placed line s
ment~see@15,16#!. As a third possibility one can start from
characterization of point processes by the probabil
generating functional and the expansion in terms of corre
tion functions. This is the way pursued in this work.

The simplest point process is a Poisson process show
no correlations at all. Since the galaxy distribution is high
clustered, a Poisson process is not a realistic model.
model with the next level of sophistication is a Gaus
Poisson process, the point distribution counterpart o
Gaussian random field. Whereas the properties of Gaus
random fields have been extensively studied, the Ga
Poisson process has not been discussed in the cosmolo
literature in a systematic way. Some of the statistical pr
erties of random fields directly translate to similar statisti
properties of point distributions, but some important diffe
ences also show up. The systematic inclusion of higher-o
correlations, as well as the characterization, and the sim
tion algorithms for such point processes will be discusse

Recently, a related class of stochastic models for the
axy distribution, the halo model, attracted some attent
~see, e.g.,@17–20#!. These models are based on the assum
tion that galaxies are distributed inside the correlated d
matter halos. Using the probability generating functional,
two- and three-point correlation function will be calculate
for this model, extending the results in@21# to include the
effects of halo substructure.

The outline of this paper is as follows. In Sec. II th
properties of the probability-generating functional of a po
process and the expansions in several types of correla
functions are briefly reviewed. The characterization of t
Gauss-Poisson process is given in Sec. III, and the phys
consequences of the constraints are discussed. A close
tion to Poisson cluster processes allows us to simulat
Gauss-Poisson process~see Appendix B 1!. In Sec. IV simu-
lations of the Gauss-Poisson processes and the line-seg
©2001 The American Physical Society09-1
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process are used to show how the Gaussian approxima
influencesJ(r ) function, a statistic sensitive to higher-ord
correlations. A comparison of the galaxy distribution with
the PSCz survey with a Gauss-Poisson processes illust
the importance of higher-order correlations. In Sec. V
extension of the Gauss-Poisson point process to ann-point
Poisson cluster process is discussed. Detailed results ar
rived for a three-point Poisson cluster process~the simula-
tion recipe is given in Appendix B!. The characterization o
a generaln-point process is discussed that is again deta
for a three-point case. The differences between a point
cess and a random field are highlighted in Sec. VI. Mod
for strongly correlated systems are mentioned in Sec.
The focus will be on the ‘‘halo model.’’ Using the formalism
based on the probability generating functionals the corr
tion functions of the ‘‘halo model,’’ including the effects o
halo substructure, are calculated in Sec. VII B. In Sec. V
some open problems are mentioned. An outlook is provi
in Sec. IX. As an example, the probability-generating fun
tion of a random variable and its expansions in several ki
of moments is reviewed in Appendix A.

II. PRODUCT DENSITIES, FACTORIAL CUMULANTS,
AND THE PROBABILITY GENERATING

FUNCTIONAL

Probability generating~PG! functionals and their expan
sions in different kinds of correlation measures have b
used to describe noise in time series~e.g.,@22#! and the elec-
tromagnetic cascades occurring in air showers~e.g., @23#!.
They have been employed in the theory of liquids~e.g.,@24#!
and other branches of many-particle physics~e.g.,@25#!. The
mathematical theory of PG functionals for point processe
nicely reviewed in@26#. Stochastic methods based on P
functions have been introduced to cosmology by@5# ~the PG
functional was presented in@27#!, and became well known
following the work of @7# and @8#. Focusing on the factoria
moments~the volume averagedn-point densities! and on
count in cells,@9# discussed several expansions of the
functions. In the following only ‘‘simple’’ point processe
will be considered: at each position in space at the most
object is allowed. This assumption is physically well justifi
for galaxies. Also, for quantum systems the methods sho
be refined~see, e.g.,@28# for fermionic ~determinantal! point
processes!.

An intuitive way to characterize a point process is to u
nth-product densities:%n(x1 , . . . ,xn)dV1•••dVn is the
probability of finding a point in each of the volume elemen
dV1 to dVn . For stationary and isotropic point fields%1(x)
5% is the mean number density, and the product den
~with a slight abuse of notation! is %2(x1 ,x2)5%2(r ) with
r 5ux12x2u being the separation of the two points. The fa
torial cumulantsc[n] (x1 , . . . ,xn) are the irreducible or con
nected parts of thenth-product densities. For example, fo
n52

%2~r !5%21c[2]~r !5%2
„11j2~r !… ~1!
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and the second factorial cumulantc[2] (r ) and the two-point
correlation functionj2(r ) quantify the two-point correlations
in excess of Poisson distributed points.

A systematic characterization of a point process is p
vided by the probability generating functional or a series
probability generating functions~see Appendix A!. Equiva-
lent to a random distribution of points in space, one cons
ers a point process as a random counting measure. A rea
tion is then a counting measureN, which assigns to each
suitable setA,Rd the number of pointsN(A) inside. For
suitable functionsh(x) one defines theprobability generat-
ing functionalof a point process via

G@h#5EFexpH E
Rd

N~dx!ln h~x!J G , ~2!

whereRd is thed-dimensional Euclidean space, andE is the
expectation value, the ensemble average over realization
the point process. Equivalently,

G@h#5EF)
i

h~xi !G , ~3!

wherexi are the particle positions in a realization. Considek
compact disjoint setsAj , and letnj5N(Aj ) be the number
of points insideAj . The PG function of thek-dimensional
random vector (n1 , . . . ,nk) is then

Pk~z!5Pk~z1 , . . . ,zk!5EF)
j 51

k

zj
njG . ~4!

Together with a continuity requirement the knowledge ofall
finite dimensional PG functionsPk determines the PG func
tional G and the point process completely~e.g., @26#!. One
obtains the PG functionPk(z)5G@h8# of the random vector
z using

h8~x!512(
j 51

k

~12zj !1Aj
~x!, ~5!

where 1A(x) is the indicator function of the setA, with
1A(x)51 for xPA and zero otherwise. Several expansions
the PG functionalG@h# are possible@26#. The expansion in
terms of the product densities%n ~the Lebesgue densities o
the factorial moment measures! reads

G@h11#511 (
n51

`
1

n! ERd
dx1•••E

Rd
dxn%n~x1 , . . . ,xn!

3h~x1!•••h~xn!. ~6!

For the factorial cumulantsc[n] or correlation functionsjn
one obtains1

1The relations to the generating functionalsR, F, and G
defined by @8# are G@h#5R@h#, G@h#5F@h21# and G@h#
5expG@h21#.
9-2
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ln G@h11#5 (
n51

`
1

n! ERd
dx1•••E

Rd
dxnc[n]~x1 , . . . ,xn!

3h~x1!•••h~xn!

5 (
n51

`
%n

n! ERd
dx1•••E

Rd
dxnjn~x1 , . . . ,xn!

3h~x1!•••h~xn!. ~7!

As a third possibility the PG functional can be expand
around the origin,

G@h#5J01 (
n51

`
1

n! ERd
dx1•••E

Rd
dxnj n~x1 , . . . ,xn!

3h~x1!•••h~xn!. ~8!

The Janossy densitiesj n(x1 , . . . ,xn)dV1•••dVn are the
probabilities that there are exactlyn points, each in one o
the volume elementsdV1 to dVn . Convergence issues o
these expansions are discussed in Sec. VIII.

III. THE GAUSS-POISSON POINT PROCESS

For a stationary Poisson process with mean number d
sity % the PG functional is

ln G@h11#5%E
Rd

dxh~x!, ~9!

corresponding to a truncation of expansion~7! after the first
term. Truncating after the second term, one obtains the
functional for the Gauss-Poisson process@29,30#

ln G@h11#5%E
Rd

dxh~x!1
%2

2 E
Rd

dxE
Rd

dyj2~ ux2yu!

3h~x!h~y!, ~10!

completely specified by its mean number density% and the
two-point correlation functionj2(r ).

There is a close resemblance to random fields. For a
mogeneous random fieldr(x) with meanE@r#5 r̄ the den-
sity contrast is defined byd(x)5@r(x)2 r̄ #/ r̄. A homoge-
neous and isotropic Gaussian random field is stochastic
fully specified by its meanr̄ and its correlation function
j2

d(ux2yu)5E@d(x)d(y)# @31#. Here,E is the average ove
realizations of the random field. The higher~connected! cor-
relation functionsjn

d50 with n.2 vanish. Similarly the cor-
relation functionsjn for n.2 vanish in a Gauss-Poisso
process. However, some important differences betwee
Gaussianrandom fieldand a Gauss-Poissonpoint process
also show up.
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A. Constraints on j2„r … and %

A functionalG@h# defined by Eq.~10! is a PG functional
of a point process if and only if thePk(z) as given in Eq.~4!
are probability generating functions. This will lead to restr
tions on the two-point correlation functionj2 and the num-
ber density% as discussed in@29# and @30#. A Pk(z) given
by Eq. ~4! always has to be positive and monotonically i
creasing with each componentzi of z, and hence lnPk(z) is
nondecreasing in each component ofz. With Eqs. ~4!, ~5!,
and ~10! one gets

] ln Pk~z!

]zl
5%uAl u11%2(

j 51

k E
Al

dxE
Aj

dyj2~ ux2yu!~zj21!

>0 ~11!

for any zj>0, whereuAl u is the volume of the setAl . The
rather obvious constraint%>0 can be derived by settingzj
51. Forzj51, j Þ i , and eitherzi50 or zi@1 the following
two nontrivial constraints emerge:

%

uAl u
E

Al

dxE
Ai

dyj2~ ux2yu!<1, ~12!

E
Al

dxE
Ai

dyj2~ ux2yu!>
2uAl u

%~zi21!
→

zi→`

0. ~13!

One can show that these two conditions provide a neces
and sufficient characterization ofj2(r ) and%, to assure that
G@h#, as given in Eq.~10!, is a PG functional@30#.

Equation~12! constrains the shape and normalization
the two-point correlation functions admissible in a Gau
Poisson process. ForAl5A5Ai

%

uAu EA
dxE

A
dyj2~ ux2yu!5N̄s2~A!<1, ~14!

wheres2(A) are the fluctuations of count in cells in exce
of a Poisson process, andN̄5%uAu is the mean number o
points inside the cellA. Hence, the total fluctuations of th
number of pointsN insideA for a Gauss-Poisson process a

E@~N2N̄!2#5N̄1N̄2s2~A!<2N̄ ~15!

and must not exceed twice the value of the fluctuations i
Poisson process (s250) for any domainA considered. An-
other way of looking at constraint~12! is by takingAl as an
infinitesimal volume element centered on the origin andAj
equal to some volumeA,

%E
A
dyj2~ uyu!<1. ~16!
9-3
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MARTIN KERSCHER PHYSICAL REVIEW E 64 056109
Consistent with Sec. III B this tells us that sitting on a po
of the process on average at the most one other poin
excess of Poisson distributed points can be present.

Now consider two volume elementsAi5dVi and Al
5dVl separated by a distance ofr, then Eq.~13! implies

j2~r !>0. ~17!

Hence, only clustered point distributions can be modeled
the Gauss-Poisson process. Any zero crossing inj2(r ) al-
ready indicates the presence of higher-order correlations

B. The Gauss-Poisson process as a Poisson cluster process

The Gauss-Poisson process can be interpreted as a s
Poisson cluster process. This is important for simulatio
~see Appendix B 1!.

A Poisson cluster process is a two-stage point proc
First one chooses Poisson distributed cluster centers,
‘‘parents,’’ with number density%p and then attaches a se
ond point process — the cluster to each cluster center~the
cluster center is not necessarily part of the point proce!.
The PG functional of a Poisson cluster process is then g
by @26#

ln G@h#5E
Rd

dx%p~Gc@hux#21!, ~18!

with Gc@hux# being the PG functional of the point proce
forming the cluster at centerx. Now consider the PG func
tional of a cluster with at maximum two points@compare
with Eq. ~3!#,

Gc@hux#5q1~x!h~x!1q2~x!h~x!E
Rd

dyf ~ ux2yu!h~y!,

~19!

whereq1(x) is the probability that only one point, the clust
center atx, is entering the cluster, whereasq2(x) is the prob-
ability that a second point is added. Clearly,q1(x)1q2(x)
51. The probability densityf (ux2yu) determines the distri-
bution of the distanceux2yu of the second pointy to the
cluster center, and is normalized according to*dzf (uzu)51.
By writing f (ux2yu) one assumes that the probability de
sity f is symmetric inx andy. Indeed, the PG functional in
Eq. ~18! is invariant under interchangingx and y, and this
assumption does not impose any restrictions. Using this
pression and Eq.~18! one obtains

ln G@h11#5E
Rd

dx%p@11q2~x!#h~x!

1E
Rd

dxE
Rd

dy%pq2~x! f ~ ux2yu!h~x!h~y!,

~20!

which equals the PG functional for the Gauss-Poisson p
cess ~10! for %5%p(11q2) and j2(r )52(%2%p) /
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„%2f (r )…. HenceeveryGauss-Poisson process is a Poiss
cluster process of the above type, and vice versa.

C. Physical implications

From the preceding section one concludes that at m
mum two points form a cluster in a Gauss-Poisson proc
Therefore, no point distribution with large-scale structur
can be modeled reliably with this kind of process. This h
physical implications both for the galaxy distribution an
percolating/critical systems.

More specific, from the observed galaxy distribution
scale-invariant two-point correlation functionj2(r )5Ar2g

with g'1.8 is deduced. Clearly such a correlation functi
does not satisfy the constraint~12!. For 0,g<3 a cutoff at
large scales has to be introduced. For the galaxy distribu
a cut-off at approximately 20h21 Mpc is the lowest value
that is roughly compatible with the observed two-point co
relation function. Taking into account the observed num
density of the galaxies, a cutoff even on this small scale d
not help. Still the constraint~12! is strongly violated, indi-
cating non-negligible higher-order correlation functions~see
also Sec. IV C!. Similarly, a zero crossing or a negativ
j2(r ) is violating the constraint~13! and also indicates tha
higher-order correlations are present. There are indicat
that the distribution of galaxies shows a negativej2(r ) on
some scale larger than 20h21 Mpc, followed by a positive
peak at approximately 120h21 Mpc @32–34#. The Gauss-
Poisson process is not able to describe these features in
distribution of galaxies and galaxy clusters.

Also a percolating cluster shows scale-invariant corre
tions. The correlation length, specifying, e.g., the exponen
cutoff of the two-point correlation function, is going to in
finity near the percolation threshold. Therefore, the geome
of the largest cluster cannot be modeled with a Gau
Poisson processes. Higher-order correlations are essent
describe the morphology of such a system. This again ill
trates that the tails of the distributions, in this case
asymptotic behavior of the two-point correlation function
essential.

To summarize these results: already by looking at
two-point correlation function and the density, one is able
exclude the Gauss-Poisson process as a model. Howeve
cannot turn the argument around and show that a given p
distribution is compatible with a Gauss-Poisson process
ing the two-point correlation function alone. There are po
processes with higher-order correlations satisfying the c
straints~12! and ~13! as discussed in Sec. IV A.

IV. DETECTING DEVIATIONS
FROM THE GAUSS-POISSON PROCESS

After having outlined the basic theory of the Gaus
Poisson process, we discuss in this section how one can
tect non-Gaussian features in a given point set.

A. The line-segment process

First a two-dimensional analytic example is studied.
the line-segment process points are randomly distributed
9-4
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FIG. 1. Plot ~a! shows a real-
ization of the line-segment pro
cess inside the unit square wit
number density%5200 ~for the
other parameters see the text! and
the corresponding two-point cor
relation function j2(r ) (r is in
units of the box length!: the
dashed one-s area was deter-
mined from 1000 realizations, the
theoretical value is given by the
dashed line, nearly on top of th
sample mean~solid line!. Plot ~b!
shows a realization of the Gauss
Poisson process with%5200 and
plot ~c! a realization of the high
density line-segment process wit
%5500, both with the corre-
sponding two-point correlation
function.
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line segments that are themselves uniformly distributed
space and direction. The number of points per line segm
is a Poisson random variable. According to Ref.@15#

j2~r !5H 1

p l%s
S 1

r
2

1

l D for r , l

0 for r> l ;

~21!

l is the length of the line segments and%s is the mean num-
ber density of line segments;l%s , %/%s , % denote the mean
length density, the mean number of points per line segm
~which can be smaller than one!, and the mean number den
sity in space, respectively. A similar model for the distrib
tion of galaxies was discussed in@16#. On small scalesr
! l , j2(r )}r 21, qualitatively similar to the observed two
point correlation function in the galaxy distribution.

This structured point process incorporates higher-or
correlations. In Fig. 1 the line-segment process is shown
comparison to a Gauss-Poisson process with the same
point correlation function for the parametersl 50.1, %s
5201, %5200, and%5500. A number density%.%s vio-
lates the constraint Eq.~12! and no Gauss-Poisson proce
equivalent to the two-point level to such a line-segment p
cess exists.

B. Detecting higher-order correlations

As can be seen from Fig. 1, the point processes are in
tinguishable on the two-point level. For another example
@35,36#. The differences between these point distributio
can be investigated with statistical methods sensitive
higher-order correlations. One may use Minkowski functio
als ~@37#, for reviews see@38,39#!, percolation techniques
@40#, the minimum spanning tree@41#, a method sensitive to
three-point correlations@42#, or directly calculate the highe
moments@43–45,9#. In the following J function is used to
quantify the higher-order clustering@46–48#.
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To define J function the spherical contact distributio
F(r ) is needed, i.e., thedistribution function of the distance
r between an arbitrary point and the nearest object in t
point set. F(r ) is equal to one minus the void-probabilit
function: F(r )512P0(r ). Another ingredient is the neares
neighbor distance distributionG(r ), defined as thedistribu-
tion function of distances r of an object in the point set to t
nearest other point@49#. For a Poisson process the probab
ity to find a point only depends on the mean number den
%, leading to the well-known result

GP~r !512exp~2%uBr u!5FP~r !, ~22!

where uBr u is the volume of ad-dimensional sphere with
radiusr. The ratio

J~r !5
12G~r !

12F~r !
~23!

was suggested in@46# as a probe for clustering of a poin
distribution. For a Poisson distributionJ(r )51 follows di-
rectly from Eq.~22!. A clustered point distribution implies
J(r )<1, whereas regular structures are indicated byJ(r )
>1. As discussed in@47# one can expressJ(r ) function in
terms of then-point correlation functionsjn :

J~r !511(
l 51

`
~2% ! l

l ! E
Br

dx1 •••E
Br

dxlj l 11~0,x1 , . . . ,xl !.

~24!

Br is a d-dimensional sphere with radiusr centered on the
origin. For a Gauss-Poisson process in two dimensions,
jn50 for n.2, the above expression simplifies2

2Unfortunately Ref.@47# discussed this Gaussian approximati
with examples of two-point correlation functions, which are n
admissible in the Gauss-Poisson process.
9-5
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FIG. 2. The spherical contac
distribution F(r ) @plot ~a!#, the
nearest neighbor distributionG(r )
@plot ~b!#, andJ(r ) function @plot
~c!# are shown for the Gauss
Poisson process@%5200, mean
value ~dashed line! and variance
~shaded area! estimated from 1000
realizations#, and the line-segmen
process (%5200, solid line!; r is
in units of the box length. The
J(r ) function according to Eq.
~25! ~dashed dotted line! lies on
top of the estimated mean. Th
dotted line is marking the result
for a Poisson process. The se
quence of solid lines in plot~d! is
theJ(r ) function for line-segment
processes with%5100, 150, 200,
300, 400, 500, 600, bending dow
successively.
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with
J~r !512%2pE
0

r

dssj2~s!. ~25!

In Fig. 2 the results forF(r ), G(r ), andJ(r ), estimated
from several line-segment processes, and the Gauss-Po
process are shown; all the processes investigated had
same two-point correlation functionj2(r ) given in Eq.~21!.
The line-segment process allows for larger voids than
Gauss-Poisson process, as seen fromF line.FGP. On small
scalesJ(r ) of the line-segment process is well approximat
by J(r ) for the Gauss-Poisson process. However on la
scales the Gauss–Poisson process shows signific
smaller J(r ) function than the line-segment process. T
J(r ) function is known analytically for several point proce
models@46,48#. In any of these cases a smallerJ(r ) is an
indication for stronger~positive! interaction between the
points ~see also@50,51#!. Specifically for Gibbs processe
~see, e.g.,@15#! an attractive interaction leads to a monoto
cally decreasingJ(r ) and a stronger interaction leads
smaller values ofJ(r ). Hence, the presence of higher-ord
correlation functions in the line-segment process gives ris
a reduced clustering strength, in the sense discussed a
Clearly, the signal ofJ(r ) also depends on the number de
sity.

C. The non-Gaussian galaxy distribution

As already mentioned, the three-dimensional distribut
of galaxies cannot be modeled in terms of the Gauss-Poi
process: the constraints on the density and two-point co
lation function are violated. In the following, this is illus
trated with a volume-limited sample of 100h21 Mpc depth,
extracted from the PSCz galaxy catalog@52#. The volume-
limited sample incorporates 2232 galaxies with galactic l
tude ubu.5°. A detailed description of the sample consi
ered here may be found in@53#. Estimators for the two-poin
correlation function are quite abundant~see@54#, and refer-
ences therein!. The results presented here do neither dep
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on the estimator, nor on the exact sample geometry, whic
indeed more complicated~see@52#!. For J(r ) function the
minus estimator is used@15,55#.

In Fig. 3 an estimated two-point correlation function
shown. The integral

%E
R3

dyj2~ uyu!'4.4 ~26!

is violating the constraint~16!, and the corresponding Gaus
Poisson process does not exist. Indeed higher-order cor
tions functions have been detected by@56# using factorial
moments. By thinning the galaxy distribution~i.e., randomly
subsampling!, one generates a point set with the same co
lation functionsjn as the observed galaxy distribution, how
ever with a reduced number of points. Since the num

FIG. 3. In plot ~a! the observed two-point correlation functio
j2(r ) of the volume-limited subsample with 100h21 Mpc depth
from the PSCz galaxy catalog is shown~solid line!. The dotted line
and the one-s area are estimated from 200 realizations of t
Gauss-Poisson process using the estimated two-point correl
function as an input, but with only a fifth of the number of points.
plot ~b! the J(r ) function of the same sample is shown with 100
~solid line!, 50%~short dashed line!, and 20% of the galaxies~long
dashed line!. The shaded area is the one-s region obtained from the
Gauss-Poisson process corresponding to the galaxy sample
only 20% of the points.
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density enters linearly in the constraint~16!, a comparison of
the thinned galaxy distribution with the Gauss-Poisson p
cess becomes feasible. The strongly interacting galaxy di
bution, as indicated by the small values ofJ(r ), shows in-
creasingly weaker interaction@higher values ofJ(r )] for the
diluted subsamples~Fig. 3!.

Now consider a sample with only 20% of the actual o
served galaxies, where the constraint~16! is satisfied@com-
pare with Eq.~26!#. This diluted sample is compared to th
Gauss-Poisson process with the same two-point correla
function. Thej2(r ) determined from the simulated Gaus
Poisson process matches perfectly with the observed co
lation function~Fig. 3!. On small scales,J(r ) function of the
thinned PSCz is reasonably modeled by the Gauss-Poi
process. However, on large scales the Gauss-Poisson pr
shows stronger interactions, whereas the thinned ga
sample, with its higher-order correlation functions, sho
weaker interactions in the sense discussed in Sec. IV B.

V. POINT PROCESSES WITH HIGHER-ORDER
CLUSTERING

As already mentioned, the measured two-point correla
function of the galaxy distribution together with the observ
density of galaxies violates the constraints, Eqs.~12! and
~13!. Consequently the distribution of galaxies cannot
modeled with the Gauss-Poisson process. Even more c
pelling, there is a clear detection of higher-order correlatio
in the galaxy distribution~e.g., @44,57,58#!. Hence, one is
interested in analytical tractable approximations of the cum
lant expansion~7!. Hierarchical closure relations have be
extensively studied~see Sec. VII A!. In the following a trun-
cation of expansion~7! beyond the Gaussian term and t
n-point Poisson cluster processes will be used.

Such a truncation may serve as a model for the gal
distribution in the weakly nonlinear regime. Using perturb
tion theory one may show thatj3}(j2)2 ~see@59#!. For large
separationsr the correlation functionj2(r ) is smaller than
unity, and consequently a truncation of expansion~7! at n
.2 provides a viable model for the large-scale distribut
of galaxies.

The general Poisson cluster process is the starting p
consider the expansion of the cluster PG functionalGc@hux#
in terms of Janossy densities conditional on the cluster ce
x @see Eq.~8!#:

Gc@hux#5J01 (
n51

`
1

n! ERd
dx1•••E

Rd
dxnj n~x1 , . . .xnux!

3h~x1!•••h~xn!. ~27!

Explicit expression for the Janossy densities are given be
The PG functional of a Poisson cluster process is then g
by
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G@h#5expH E
Rd

dx%c~Gc@hux#21!J
5expH E

Rd
dx%cF (

n51

`
1

n! ERd
dx1•••E

Rd
dxn

3 j n~x1 , . . .xnux!h~x1!•••h~xn!21G J . ~28!

Here the probabilityq0 of having no point in the cluster atx
is assumed to be zero, i.e.,J050. This does not impose an
additional constraints, it only leads to a redefinition of t
number density of cluster centers%c85%c(11q0).

Using this more formal approach the PG functional of t
Gauss-Poisson process can be written in terms of the Jan
densities withj n50 for n.2;

j 1~x1ux!5q1~x!dD~x2x1!,
~29!

j 2~x1 ,x2ux!5q2~x!dD~x2x1! f 2~x2ux1!2!.

Here j 1 ( j 2) are the probability densities for the spatial di
tribution of one~two! points in the cluster, multiplied by the
probabilityq1 (q2) that there are exactly one~two! points in
the cluster atx. dD is the d-dimensional Dirac distribution.
f 2(x2ux1) is the probability density of the second pointx2
under the condition that there is a point atx1, normalized by
*dx2f 2(x2ux1)51.

The PG functional~28! is invariant under changes of th
order of integration, implying that one can use t
j n(x1 , . . .xnux) symmetrically defined in all coordinates~in-
cluding x). With the additional assumption of homogenei
and isotropy one getsf 2(x2ux1)5 f (ux12x2u), as already
used in Sec. III B for the construction of the Gauss-Poiss
process.

A. The three-point Poisson cluster process

In a three-point Poisson cluster process Eq.~28! is trun-
cated at the third order and at the most three points per c
ter are allowed. Additional to Eq.~29!

j 3~x1 ,x2 ,x3ux!5q3~x!dD~x2x1! f 3~x2 ,x3ux1!3! ~30!

appears, with the probabilityq3(x) that the cluster consist
out of three points, andq11q21q351 with qi>0.
f 3(x2 ,x3ux1) is the probability density that there are tw
points atx2 andx3, under the condition that one point is a
x1, with the normalization*dx2*dx3f 3(x2 ,x3ux1)51. In-
serting these definitions one obtains

ln G@h#5E
Rd

dx1%pq1~x1!@h~x1!21#

1E
Rd

dx1%pE
Rd

dx2q2~x1! f 2~x2ux1!

3@h~x1!h~x2!21#

1E
Rd

dx1%pE
Rd

dx2E
Rd

dx3q3~x1! f 3~x2 ,x3ux1!

3@h~x1!h~x2!h~x3!21#. ~31!
9-7
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As already mentioned,f 3(x2 ,x3ux1) can be assumed to b
symmetric in its three arguments. Slightly abusing notati
let f 2(x1 ,x2) and f 3(x1 ,x2 ,x3) be the symmetrically defined
densities corresponding tof 2(x2ux1) and f 3(x2 ,x3ux1), and
define

f 2
(3)~x1 ,x2!5E

Rd
dx3f 3~x1 ,x2 ,x3!. ~32!

Replacingh by h11 and rearranging the terms the factor
cumulant expansion of the three-point cluster process re

ln G@h11#5E
Rd

dx1h~x1!%p„11q2~x1!12q3~x1!…

1E
Rd

dx1E
Rd

dx2h~x1!h~x2!%p„q2~x1!

3 f 2~x1 ,x2!13q3~x1! f 2
(3)~x1 ,x2!…

1E
Rd

dx1E
Rd

dx2E
Rd

dx3h~x1!h~x2!h~x3!

3%pq3~x1! f 3~x1 ,x2 ,x3!. ~33!

Comparing Eq.~33! with the expansion~7! one arrives at

%5~q112q213q3!%p5~11q212q3!%p,

j2~x1 ,x2!5
2!

~11q212q3!2%p

@q2f 2~x1 ,x2!

13q3f 2
(3)~x1 ,x2!#,

j3~x1 ,x2 ,x3!5
3!

~11q212q3!3%p
2

q3f 3~x1 ,x2 ,x3!,

~34!

and the correlation functionsjn equal zero forn>4. The
simulation procedure for the three-point Poisson cluster p
cess is described in Appendix B 2.

B. Constraints on %, j2, and j3

By the definition of the three-point Poisson cluster p
cess, the probability densitiesf 2>0, f 3>0, andf 2

(3)>0 and
consequentlyj2(r )>0 for all r, as well asj3>0. This is a
generic feature of Poisson cluster processes.

The Gauss-Poisson process, defined through the tru
tion of the cumulant expansion after the second term
equivalent to the two-point Poisson cluster process~see Sec.
III B !. Unfortunately, this equivalence does not hold for t
higher n-point processes anymore. The general three-p
process is defined as point process with a factorial cumu
expansion truncated after the third term. Proceeding sim
to Sec. III A, necessary conditions for the existence of suc
point process can be derived@compare with Eq.~11!# as
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ar
a

0<%uAl u1(
i 51

k

%2uAl uuAi u j̄2~Al ,Ai !~zi21!

1(
i 51

k

(
j 51

k
%3

2
uAl uuAi uuAj u j̄3~Al ,Ai ,Aj !~zi21!~zj21!,

~35!

with the volume-averaged correlation functions

j̄n~A1 , . . . ,An!5
1

uA1u•••uAnu EA1

dx1•••E
An

dxn

3jn~x1 , . . . ,xn!, ~36!

and for consistencyj̄1(A)51. Again, forzi51 one obtains
%>0. The nontrivial constraints read

1>%uAsu j̄2~Al ,As!2%2uAsu2j̄3~Al ,As ,As!, ~37!

0<j̄3~Al ,As ,As!, ~38!

1>%uAsu j̄2~Al ,As!1%uAr u j̄2~Al ,Ar !

2
%2

2
uAsu2j̄3~Al ,As ,As!2

%2

2
uAr u2j̄3~Al ,Ar ,Ar !

2%2uAsuuAr u j̄3~Al ,As ,Ar !. ~39!

Equation~37! can be derived by settingzs50 andzi51 for
all iÞs, Eq. ~38! follows from zs→` and zi51 for all i
Þs. Usingzr , zs→` does not lead to new constraints. Wi
zr505zs , rÞs, and zi51 for all iÞr ,s one obtains Eq.
~39!. No additional constraint arises by settingz52.

Equation~38! implies j3>0. Equation~37! and Eq.~39!
are the extension of the constraint~14!. The terms propor-
tional to j̄3 can balance the terms withj̄2, and a clustering
point processes with a number density higher than in
Gauss-Poisson process is possible. Moreover,j2 is not con-
strained to positive values anymore. Hence, already by
cluding three-point correlations, a point process model wit
two-point correlation functionj2 having a zero crossing be
comes admissible. This answers affirmatively the questio
@60#, whether there exists a general three-point cluster p
cesses with a negative second moment. However, in
three-point Poisson cluster process discussed in the pre
ing section,j2>0 is required illustrating that the three-poin
Poisson cluster processes form only a subset of all poss
three-point processes.

C. The n-point Poisson cluster process

It is now clear how to construct then-point Poisson clus-
ter process. Letqm be the probability of havingm points per
cluster with(m51

n qm51;

j n~x1 , . . . ,xnux!5qn~x!dD~x2x1! f n~x2 , . . . ,xnux1!n!
~40!
9-8
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determines the distribution of then points inside the cluste
( f 151). As above thef n are assumed to be symmetric in a
their arguments, and forn.m

f m
(n)~x1 , . . . ,xm!5E

Rd
dxm11•••E

Rd
dxn

3 f n~x1 , . . . ,xm ,xm11 , . . . ,xn!,

~41!

and f m5 f m
(m) . Inserting Eq.~40! into Eq.~28! and after some

algebraic manipulations one can compare term by term w
the factorial cumulant expansion~7! of the PG functional,

%5%p (
m51

n

mqm

jk~x1 , . . . ,xk!5
k!%p

%k (
m5k

n S m

k D qmf k
(m)~x1 , . . . ,xk!,

~42!

with k<n, andjk50 for k.n. The statistical properties o
this n-point Poisson cluster process are now complet
specified by the correlation functionsjk with k<n and the
mean density%. Equations~42! and the normalization of the
f m can be used to determine thef m as well as%p and qm
from given correlation functionsjn and the number densit
%. A simulation algorithm similar to the one described
Appendix B 2 can be constructed.

D. The generaln-point process

The generaln-point process is defined as the point proce
resulting from the factorial cumulant expansion truncated
ter thenth term. Proceeding similarly to Sec. III A one a
rives at the constraint equations

0>%uAl u1%2(
i 51

k

uAl uuAi u j̄2~Al ,Ai !~zi21!1•••

1
%nn

n! (
i 1 , . . . ,i n2151

k

uAl uuAi 1
u•••uAi n21

u

3 j̄n~Al ,Ai 1
, . . . ,Ai n21

!~zi 1
21!•••~zi n21

21!.

~43!

It is now possible to compute the constraints for then-point
process, in close analogy to the three-point process in
V B. Reference@60# gave necessary and sufficient conditio
for the existence of a generalized Hermite distributi
~closely related to thisn-point process!. They discuss the
constraints for a slightly different expansion of the PG fun
tion. Unfortunately, the transformation of their expansion
the expansion in terms of correlation functions is as tedi
as the direct calculation of the constraints.
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VI. RANDOM FIELDS VS POINT PROCESSES

A random fieldu(x) is in the simplest case a real-value
function of Rd @31#. In cosmology the initial mass-densit
field is often modeled as a Gaussian random field~see, e.g.,
@2,61#!. The nonlinear evolution of the density field unavoi
ably introduces higher-order correlations. A random fie
u(x) is stochastically characterized by its characteristic fu
tional ~e.g.,@62#!

Fu@v#5EuFexpH i E
Rd

dxv~x!u~x!J G , ~44!

whereEu denotes the expectation value over realizations
the random fieldu. In close analogy to the expansion~A5! of
the characteristic function of a random variable in terms
cumulants, one obtains the expansion of the character
functional

ln Fu@v#5 (
n51

`
i n

n! ERd
dx1•••E

Rd
dxncn

u~x1 , . . . ,xn!

3v~x1!•••v~xn! ~45!

in terms of n-point cumulantscn
u(x1 , . . . ,xn). Here c1

u(x)
5Eu@u(x)#5ū is the mean value. The correlation functio
of the field is

j2
u~x1 ,x2!5

c2
u~x1 ,x2!

ū2
5

Eu@u~x1!u~x2!#

ū2
21, ~46!

and similar for higher-order correlation functions~see, e.g.,
@62,63#!. The well-known characteristic functional of th
Gaussian random field reads

ln Fu@v#5 i E
Rd

dx1ūv~x1!

2
1

2ERd
dx1E

Rd
dx2c2

u~x1 ,x2!v~x1!v~x2!,

~47!

with the covariance functionc2
u(x1 ,x2).

The characteristic functional of a point process is defin
by

F@h#5EFexpH i E
Rd

N~dx!h~x!J G , ~48!

and the relation to the PG functional isF@h#5G@eih#. An
expansion into cumulantsck(x1 , . . . ,xk) is also possible,

ln F@h#5 (
k51

`
i k

k! ERd
dx1•••E

Rd
dxkck~x1 , . . . ,xk!

3h~x1!•••h~xk!. ~49!

The cumulantsck(•) should not be confused with th
factorial cumulantsc[k] (•).

A. A theorem of Marcinkiewicz

A theorem of Marcinkiewicz@64# states that if the char
acteristic functionw(s) of a random variable~see Appendix
9-9
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MARTIN KERSCHER PHYSICAL REVIEW E 64 056109
A! is the exponential of a polynomial with finite degre
larger than 2, then the positive definiteness of the probab
distribution is violated~see, e.g.,@65–67#!. A generalized
Marcinkiewicz theorem for characteristic functionals@68,69#
tells us that this expansion has to be either infinite or a po
nomial in h(x) @or v(x)] of degree less than or equal to
This directly applies to the expansion of the characteri
functionals of a random fieldFu@v# and a point process
F@h# in terms of cumulants.

However, for a point process one can see that the exp
sion of the PG functional in terms offactorial cumulants
c[k] (•) @or correlation functionsjk(•)] allows a truncation at
a finite k.2. As long as constraints on the density and
correlation functions are fulfilled, the point process is w
defined. Although the PG functional was used mainly in
context of discrete events, it seems worthwhile to consi
the characterizations of random fields with factorial cum
lants.

Another systematic expansion is provided by the Ed
worth series. It was successfully applied in cosmology
quantify the one-point probability distribution function fo
the smoothed density field on large scales@70#. Recently,
authors of Ref.@71# showed how to use the truncated Edg
worth series to generate realizations of non-Gaussian ran
fields with predefined correlation properties. The trunca
Edgeworth series also violates the positive definiteness o
probability distribution, but Ref.@71# restores the positivity,
reintroducing higher correlations, leading to a ‘‘leaking
into higher correlations.

The cumulantsck and the factorial cumulantsc[k] of a
random variable are related byck5( l 51

k s2(k,l )c[ l ] @see Eq.
~A15!#. Looking at the Poisson cluster processes discusse
the preceding sections, one observes that such a rela
must not hold between the cumulants and the factorial cu
lants of a point process. As an example, consider the th
point Poisson cluster process withc[n] (•)50 for all n.3. A
finite c[3] (•) leads to nonzerocn(•) for all n ~see Appendix
C for details.!

B. The Poisson model

In cosmology the point distribution is often related to t
mass density field assuming the ‘‘Poisson model.’’ The va
of the mass density field is assumed to be proportional to
local number density, and the point distribution is co
structed by ‘‘Poisson sampling’’ the correlated mass den
field. If the mass density field is itself a realization of
random field, the resulting point process is called a Cox p
cess, or doubly stochastic process. Within this model
may show that the cumulantscn

u of the density field are pro
portional to thefactorial cumulantsc[n] of the point distri-
bution @72,26#: c[n]5cn

ur2/ū2. It is important to notice that
this relates the characteristic functional of the random fi
Fu@v# to the PG functional of the point processG@h#. For
the correlation functions one obtains

jn~x1 , . . . ,xn!5jn
u~x1 , . . . ,xn!. ~50!

Hence, this model allows a direct comparison of predictio
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from analytical calculations with the observed correlati
functions in the galaxy distribution.

Clearly the question arises, what is wrong with the sim
picture that one starts with a Gaussian random field
‘‘Poisson sample’’ it to obtain the desired point distributio
The answer is that a Gaussian random field is an appr
mate model for a mass density field only if the fluctuatio
are significantly smaller than the mean mass density. Ot
wise negative mass densities~i.e., negative ‘‘probabilities’’
for the Poisson sampling! would occur. Only in the limit of
vanishing fluctuations a Poisson sampled Gaussian ran
field becomes a permissible model. However, in this lim
one is left with a pure Poisson process.

VII. MODELS FOR STRONGLY CORRELATED SYSTEMS

In the Secs. III and V several types of point process
were discussed, all featuring a truncated factorial cumu
expansion. As argued at the beginning of Sec. V, suc
truncation is feasible for the matter distribution in the Un
verse, as long asj2(r ),1, i.e., for points with large separa
tions. Mainly two approaches have been followed to mo
the galaxy distribution also on small scales withj2(r )@1.
The hierarchical models are briefly discussed in the follo
ing section and in Sec. VII B an extension of the halo mo
is presented.

A. Hierarchical models

In cosmology one often starts with a scale-invariant c
relation functionj2(r )}r 2g and assumes some closure re
tions for jn . Especially the hierarchical ansatzjn
5Qn( trees)

n21j2 was extensively studied~e.g., @72–
74,8,75,9#, and more recent@76,77#!. Authors of Ref.@8#
discuss conditions for the coefficientsQn such that the ex-
pansion of the PG functions in terms of the count in ce
converges. In this case the count in cells uniquely determ
the point process. As illustrated in Sec. VIII with the lo
normal distribution, a nonconverging expansion does
necessarily imply that the stochastic model is not well d
fined. It only implies that such a point process model is n
completely specified by its correlation functions. For critic
systems similar expansion in terms of correlation functio
are typically divergent~see, e.g.,@78#!.

As another closure relation Kirkwood@79# employed the
following approximation

%3~x1 ,x2 ,x3!5%3@11j2~x1 ,x2!#@11j2~x2 ,x3!#

3@11j2~x3 ,x1!# ~51!

to calculate thermodynamic properties of fluids using
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Thi
closure relation is exact for the log-normal distribution~e.g.,
@80#!. Empirically however, one finds that this ansatz is d
favored as a model for the galaxy distribution@81#.

B. The generalized halo model

In Sec. V several types of Poisson cluster processes w
constructed by starting with Poisson distributed centers
9-10
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attaching a secondary point process, the cluster, to e
point. One can generalize this procedure by considering c
ter centers given by already correlated points. One possib
is to iterate the construction principle of the simple Poiss
cluster process leading to themth order Neyman-Scott pro
cesses@5#. If one is only interested in the first few correlatio
functions, a full specification of the point process is not n
essary. Within the halo model~see, e.g.,@21,17,82,18–20#! it
is specifically easy to calculate the correlation functions. T
difference in the Poisson cluster processes discussed p
ously is that the cluster centers now may be correlated th
selves. A major physical assumption entering is that
properties of the clusters~halos! are independentof the po-
sitions and correlations of the cluster centers.

Consider a point process for the cluster centers, the
ents, specified by the PG functionalGp@h#. Independent of
the distribution of the centers, a cluster with a PG functio
Gc@huy# is attached to each centery. Then the PG functiona
of this cluster process is given by the ‘‘folding’’ of the tw
PG functionals@26#:

G@h#5Gp@Gc@hu•##. ~52!

Using expansion~7!, these PG functionals are given by

ln Gp@h11#5 (
m51

`
%p

m

m! ERd
dy1•••E

Rd
dymjm

(p)~y1 , . . . ,ym!

3h~y1!•••h~ym!, ~53!

ln Gc@h11uy#5 (
n51

`
1

n! ERd
dx1•••E

Rd
dxnc[n]~x1 , . . . ,xnuy!

3h~x1!•••h~xn!, ~54!

where%p is the number density and thejn
(p) are the correla-

tion functions of the parent process. Thec[n] ( . . . uy) are the
factorial cumulants specifying the point distribution in
cluster, conditional on the cluster centery. c[1] (xuy) is the
halo profile, with the mean number of points per halom
5*dxc[1] (xuy). The c[n] , n>2 quantify the halo substruc
ture. A halo without substructure is an inhomogeneous P
son process, and completely characterized byc[1] (xuy) and
c[n]50, n>2. Combining Eqs.~52! and ~53!

ln G@h11#5 (
m51

`
%p

m

m! ERd
dy1•••E

Rd
dymjm

(p)~y1 , . . . ,ym!

3)
i 51

m

~Gc@h11uyi #21!, ~55!

one immediately recovers the PG functional of the Pois
cluster process Eq.~18! by settingjm

(p)50 for m>2 (j1
(p)

51).

C. j2 and j3 in the generalized halo model

In the standard halo model the clusters are simply m
eled by an inhomogeneous Poisson process, whereas the
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ters are given by a correlated point process, typically de
mined from the evolved density distribution. Based on the
assumptions one can calculate the correlation functionsjn
for the halo model@21,17#. Both theoretical models as we
as observations suggest that dark matter caustics lead to
structure inside halos@83#. Also recent high-resolution
N-body simulations suggest that 15–40 % of the simula
halos show a significant amount of substructure~see @84#,
and references therein!. To generalize the halo model, th
correlations inside the halo are taken into account.

Consider the expansion ofGc@huyi #21 in h,

Gc@huyi #215E
Rd

dx1h~x1!c[1]~x1uyi !

1
1

2!ERd
dx1E

Rd
dx2h~x1!h~x2!

3@c[1]~x1uyi !c[1]~x2uyi !1c[2]~x1 ,x2uyi !#

1
1

3!ERd
dx1E

Rd
dx2E

Rd
dx3h~x1!h~x2!h~x3!

3@c[1]~x1uyi !c[1]~x2uyi !c[1]~x3uyi !

13c[2]~x1 ,x2uyi !c[1]~x3uyi !

1c@3#~x1 ,x2 ,x3uyi !#1O@h4#. ~56!

After inserting this expansion into Eq.~55! and collecting
terms proportional to powers of%h(•), with the mean num-
ber density%5%pm, one can directly compare with expan
sion ~7! and read off the correlation functions;

j2~x1 ,x2!5
1

%pm2ERd
dy1@c[1]~x1uy1!c[1]~x2uy1!

1c[2]~x1 ,x2uy1!#

1
1

m2ERd
dy1E

Rd
dy2j2

(p)~y1 ,y2!

3c[1]~x1uy1!c[1]~x2uy2!, ~57!

j3~x1 ,x2 ,x3!5
1

%p
2m3ERd

dy1@c[1]~x1uy1!c[1]~x2uy1!

3c[1]~x3uy1!13c[1]~x1uy1!c[2]~x2 ,x3uy1!

1c@3#~x1 ,x2 ,x3uy1!#

1
3

%pm3 ERd
dy1E

Rd
dy2j2

(p)~y1 ,y2!

3@c[1]~x1uy1!c[1]~x2uy2!c[1]~x3uy2!

1c[1]~x1uy1!c[2]~x2 ,x3uy2!#

1
1

m3ERd
dy1E

Rd
dy2E

Rd
dy3
9-11
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3j3
(p)~y1 ,y2 ,y3!c[1]~x1uy1!c[1]~x2uy2!

3c[1]~x3uy3!. ~58!

Similarly the highern-point correlation functions can be ca
culated.

In current calculations of the two- and three-point fun
tions for the halo model@17,82# the galaxies inside the halo
are modeled as an inhomogeneous~finite! Poisson process
The halo profilec[1] (xuy) is conditional on the cluster cente
y, but no substructure inside halos is present, i.e.,c[n]50 for
n>2. In this case the above expressions simplify to the
sult of @21#.

The simulation of such a point distribution can be carr
out in a multistep approach similar to the simulation of t
Gauss-Poisson process~Appendix!. First we generate the
correlated cluster centers, e.g., by using the Gauss-Poi
process or a low-resolution simulation, and then attach a
ondary point process either modeled as an inhomogen
Poisson orn-point Poisson cluster process.

D. Halo substructure

The following discussion shall serve mainly as an illu
tration as to how to incorporate halo substructure in calcu
tions of the correlation function. To keep things simple, t
following assumptions are made: the halo profilec[1] (xuy)
5c[1] (ux2yu) is independent of the mass of the halo, a
c[2] (x1 ,x2uy) factors into c[1] (x1uy)c[1] (x2uy)g(ux12x2u),
as expected for locally isotropic substructures. LetP(p)(k)
5*@dx/(2p)3#j2

(p)(uxu)e2 ik•x be the power spectrum of th

spatial distribution of the halo centers, and letc̃[1] (k) and
g̃(k) be the Fourier transform ofc[1] and g, respectively.
The power spectrum of the galaxy distribution in the gen
alized halo model is then

P~k!5
~2p!3

%pm2
uc̃1~k!u21

~2p!6

m2
uc̃[1]~k!u2P(p)~k!

1
~2p!3

%pm2 E dk8uc̃[1]~k8!u2g̃~ uk2k8u!. ~59!

The first two terms are the result of Ref.@21#, the additional
term accounts for a halo substructure and involves a fold
of c̃[1] with g̃ in Fourier space. Similar expressions can
derived from Eq.~58! for the bispectrum. Quantitative pre
dictions for the galaxy distribution, similar to the investig
tions of @17#, will be the topic of future work.

VIII. SOME OPEN PROBLEMS

Our investigations rested on the assumption that the
relation functions exist and that the expansions of the
functional converge. In this case the PG functional, and c
sequently the point process, is determined completely by
correlation functions. The first assumption, the existence
the correlation functions~the factorial cumulants!, does not
impose dramatic restrictions for the models. In classical s
tems the mean number of pointsE@N# as well as the factoria
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momentsE@N(N21)•••(N2n11)# should be finite in any
bounded domain. For then-point Poisson cluster processe
discussed in the preceding sections, at the mostn points re-
side in a cluster, which are distributed according to a Pois
process with constant number density. Clearly, in suc
simple situation both assumptions are satisfied. Howe
even for physically well motivated models, a convergence
the expansion of the PG functional may not be guarante
although the point process itself and the correlation functi
are well defined.

Perhaps the best known example of a probability distri
tion that is not fully specified by its moments is the lo
normal distribution. The probability density of a log-norm
random variable is given by

p~x!5
1

sxA2p
expF2

~ ln x2 x̄!2

2s2 G ~60!

with parametersx̄ ands2, the mean and variance of lnx. The
moments@see Eq.~A1!# mn5exp(nx̄11

2n
2s2) are well de-

fined, however, expansion~A5! of the characteristic function
is not convergent. And indeed Ref.@85# showed that the
probability density

p8~x!5p~x!H 11esinF2pk

s2
~ ln x2 x̄!G J , ~61!

where 0,e,1 and k is a positive integer, has momen
identical to the moments of the log-normal distribution.
comparison ofp(x) andp8(x) is shown in Fig. 4.

A log-normal random field~an ‘‘exponentiated’’ Gaussian
random field! is positive at any point in space, and a poi
process can be constructed using the value of the field as
local number density. The multivariate log-normal distrib
tion, and the log-normal random field inherit the behavior
the moments of the simple log-normal distribution. The po

FIG. 4. Probability density of the log-normal distribution~solid

line, x̄50 ands50.8) and a probability density from the family o
distributions with the same moments~dashed line,e50.5 andk
51).
9-12
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distribution obtained from the ‘‘Poisson sampled’’ log
normal random field is not characterized completely by
correlation functions as already discussed in@80#. See also
Ref. @86# for a similar approach towards this ‘‘log-Gaussia
Cox process.’’

In a Poisson cluster process~and also in the halo model!
the point distribution inside the cluster is specified indep
dently of the distribution of the centers. This constructi
approach, and the truncation of the moment expansion, g
antee the existence of these processes. A characteriz
result for the generalized Hermite distribution, closely
lated to the generaln-point process considered in Sec. V D
is discussed in Ref.@60#. Also well-defined point processe
that do not impose such a truncation of the moment exp
sion are possible. A simple model is the line-segment p
cess used in Sec. IV A, where the number of points per c
ter is a Poisson random variable. Attempts towards a gen
characterization of point processes were conducted by@87–
89#, and partially succeeded for the case of infinitely div
ible point processes.

One can show that any regular infinitely divisible poi
processes is a Poisson cluster process~e.g., @26#, regular
means that a cluster with an infinite number of points h
probability zero!. An infinitely divisible point processes ma
be constructed as a superposition of any number ofindepen-
dent point processes. It is interesting to note that the lo
normal distribution is infinitely divisible@90#, although the
expansion of the characteristic function in terms of mome
~A5! does not converge.

On small scales the galaxy correlation function is sc
invariant:j2}r 2g. If a cutoff at some large scales is prese
and the constraints for the density and the correlation fu
tions are satisfied, a model based on a Poisson cluster
cess becomes feasible. Unfortunately, the superpositio
independentpoint processes, as implied by the infinite divi
ibility of a Poisson cluster process, does not seem to b
good model assumption for the interconnected network
correlated walls and filaments, as observed in the gala
distribution~e.g.,@91#!. The correlation functions for the ga
axy distribution are close to zero for large separations,
from current observations one cannot infer a definite cut
As discussed in Sec. III C for the Gauss-Poisson process
large-scale behavior of the correlation functions plays an
portant role in the construction of the Poisson cluster p
cesses. Moreover, the dynamical equations governing
evolution of large-scale structures are nonlocal~see@92# and
references therein!. Therefore, it seems worthwhile to con
sider also point process models that are not infinitely div
ible. Unfortunately, beyond infinitely divisible point pro
cesses it is not clear what kind of properties the correla
functions have and especially what kind of additional co
straints arise.

IX. SUMMARY AND CONCLUSION

The Gaussian random field, fully specified by the me
and its correlation function, is one of the reference mod
employed in cosmology. Typical inflationary scenarios su
gest that the primordial mass-density field is a realization
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a Gaussian random field. Non-Gaussian features in
present day distribution of mass may be attributed eithe
the nonlinear process of structure formation, or to a n
Gaussian primordial density field. Observations of the lar
scale distribution of galaxies however provide us with a d
tribution of points in space. The process of galaxy format
may introduce further non-Gaussian features in the gal
point distribution. In this paper a direct approach towards
characterization of this point set was pursued. The statist
properties of the point distribution can be specified by
sequence of correlation functionsjn . In close analogy to the
Gaussian random field, a Gaussian point distribution,
Gauss-Poisson point process, was constructed. This ran
point set is fully specified by its mean number density%, the
two-point correlation functionj2(r ), and jn50 for n.2.
Important constraints on% and j2(r ), not present for the
Gaussian random field, show up. Namely,j2(r )>0 for all r,
and the variance of the number of points must not exc
twice the value of a Poisson process. The violation of th
constraints indicates non-Gaussian features in the galaxy
tribution. The equivalence of the Gauss-Poisson point p
cess with a Poisson cluster point process leads to a sim
simulation algorithm for such a point distribution. Using th
J function, higher-order correlations were detected in bot
two–dimensional example and the galaxy distribution. T
comparison with the Gauss-Poisson point process allow
to quantify the level of significance of these non-Gauss
features. Using these methods Ref.@93# could show that the
distribution of galaxy clusters may not be modeled by
Gauss-Poisson process at a significance level of 95%.

The formal approach based on the probability genera
functional facilitated the definition, the characterization, a
the simulation of the Gauss-Poisson point process. The
clusion of higher-order correlation functions was straightf
ward, leading to then-point Poisson cluster processes. Bo
the definition and the simulation algorithm were detailed
the three-point Poisson cluster process. The Gauss-Poi
point process and the two-point Poisson cluster process
equivalent. However, this is not true for then-point casen
.2 anymore. The set of generaln-point processes, resultin
from a truncation of the cumulant expansion of the PG fu
tional after thenth order, contains alln-point Poisson cluster
processes as a true subset. This was discussed for the t
point case explicitly. Although models based on then-point
Poisson cluster process are not the most general ones,
cover a broad range of clustering point distributions. A Po
son cluster process can be simulated easily and is espec
helpful for comparing statistical methods and estimators.

The inclusion of more and more points in the random
placed clusters is the only one way to extend the Gau
Poisson point process into the strongly-correlated regime
the halo model one allows for correlations between the c
ter centers. Typically the halo~i.e., the galaxy cluster! is
modeled without substructure. Again using the PG fun
tional, the influence of correlations inside a halo on t
n-point correlation functions of the resulting point distrib
tion could be calculated.

All the models discussed above offer some insight in
certain aspects of the clustering of the galaxy distribution.
9-13
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MARTIN KERSCHER PHYSICAL REVIEW E 64 056109
argued in the preceding section, point process models
are not decomposable into independent point processes
more appropriate. Unfortunately, even basic mathemat
questions concerning the~complete! characterization of thes
models in terms of moments and beyond are still open.
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APPENDIX A: CHARACTERISTIC AND GENERATING
FUNCTIONS OF RANDOM VARIABLES

A short review dealing with the characteristic and pro
ability generatingfunction of a random variableand their
expansions in terms of moments, cumulants, factorial m
ments, and factorial cumulants is given. This appendix
meant to serve as an illustration highlighting the analog
between expansions of the probability generatingfunctional
and the probability generatingfunction ~see also@26#!. To
keep this summary simple it is assumed that the mom
etc. exist and the expansions converge. For a more thoro
treatment of characteristic and generating functions see,
@94,95,67#.

The moments of a random variablex with probability dis-
tribution F are defined by

mk5E@xk#5E dF~x!xk. ~A1!

If n is a discrete random variable, especially if it is integ
valued and greater than or equal to zero, it is often m
convenient to work with the factorial moments

m[k]5E@n[k] #5E dF~n!n[k]5 (
n50

`

pnn[k] , ~A2!

wheren[k]5n(n21)•••(n2k11), andpn is the probabil-
ity that the random variable takes the valuen. Similarly, for
point processes it is more convenient to work with prod
densities~or factorial moment measures!, instead of moment
measures.

The characteristic functionw(t), tPR of a distributionF
is defined as

w~s!5E
2`

`

dF~x!eisx ~A3!

and serves as a generating function for the moments.
panding the exponential one can easily verify that
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mk5~2 i !k
dkw~s!

dsk U
s50

. ~A4!

By inverting one obtains the expansion ofw(s) in terms of
moments,

w~s!5 (
k50

`
~ is!k

k!
mk . ~A5!

The probability generating functionP(z) of a random
variablen is defined as

P~z!5E@zn#. ~A6!

Note that P(eit)5w(t). For a non-negative integer-value
random variable one obtains the expansions

P~z!5 (
k50

`

pkz
k, ~A7!

P~11t !511 (
k51

`
tk

k!
m[k] , ~A8!

in terms of the probabilitiespn . P(11t) serves as the gen
erating function for the factorial momentsm[k] . Similarly,
the product densities~factorial moment measures! for a point
process can be derived as functional derivatives~Frechet de-
rivatives! of the probability generating functional.

Using P(eit)5w(t) one can derive the relation betwee
moments and factorial moments

w~s!5 (
k50

`
~ is!k

k!
mk5P~eis!511(

t50

`
~ is! t

t! (
k51

`

m[k]s2~ t,k!,

~A9!

where

s2~ t,k!5(
l 51

k

~21!k2 l
l t

~k2 l !! l !
~A10!

are the Stirling numbers of the second kind, the numbe
partitions which split the set$1, . . . ,t% into k pairwise dis-
joint nonempty sets~see, e.g.,@96#!. Sinces2(t,k)50 for k
.t, which is also respected by expression~A10!, one finally
arrives at

mt5 (
k51

t

s2~ t,k!m[k] . ~A11!

One considers not only the momentsmk of a random vari-
able, but also the cumulantsck defined by

expS (
k51

`
~ is!k

k!
ckD 511 (

k51

`
~ is!k

k!
mk5w~s!. ~A12!

Clearly, lnw(s) serves as a generating function for the cum
lantsck . Perhaps the best known cumulant is the varianc
9-14
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c25s25m22m1
2 . ~A13!

Similarly, for non-negative integer valued random variab
the factorial cumulantsc[k] are defined by

expS (
k51

`
tk

k!
c[k] D 511 (

k51

`
tk

k!
m[k]5P~11t !. ~A14!

Hence, lnP(11t) serves as the generating function of t
factorial cumulantsc[k] . The correlation functionsjn used in
cosmology are the densities of the normalized factorial
mulant measures of a point processes, corresponding to
factorial cumulantsc[k] of a discrete random variable. Se
ting t5eis21 in Eq. ~A14! and comparing term by term
with Eq. ~A12! one obtains the same relation between cum
lants and factorial cumulants, as between moments and
torial moments,

ck5(
l 51

k

s2~k,l !c[ l ] . ~A15!

APPENDIX B: SIMULATION ALGORITHMS

1. The Gauss-Poisson point process

As discussed in Sec. III B every Gauss-Poisson proces
a Poisson cluster process and, therefore, can be simu
easily. For a given number density% and a two-point corre-
lation functionj2(r ) fulfilling constraints~12! and ~13!, re-
alizations of the Gauss-Poisson process can be gene
straightforwardly. With the normalization C2
5*Rddxj2(uxu) and*Rddxf (uxu)51 one calculates the quan
tities needed for the simulation:f (r )5j2(r )/C2 , q2
5%C2 /(22%C2), q1512q2, and %p5%(12%C2/2).
Constraint~16! now can be written asC2%<1. The simula-
tion is carried out in two steps.

~1! First generate the cluster centers according to a P
son distribution with number density%p .

~2! For each cluster centerx, draw a uniform random
numberz in @0,1#. If z,q1, then keep only the pointx. If
z>q1 then keep the pointx and additionally chose a random
direction on the unit sphere and a distanced with the prob-
ability density f and place the second point according
them.

To get the correct point pattern inside a given windo
one also has to use cluster centers outside the window
ensure that any possible secondary point inside the win
is included.

2. The three-point Poisson cluster process

In the following, the algorithm for the simulations of th
three-point cluster process is given. Expressions~34! to-
gether with the normalization conditions forf 2 and f 3 serve
as a starting point. An algorithm similar to the one for t
Gauss-Poisson process described in Appendix can be
structed.

Given the number density%, and the two- and three-poin
correlation functions,j2 andj3, one defines
05610
-
the
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c-

is
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ted
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to
w

n-

C25E
Rd

dxj2~ uxu! and C35E
Rd

dxE
Rd

dyj3~0,x,y!.

~B1!

Using the normalization off 2 and f 3 one obtains

q25
3~C2%2C3%

2!

~623C2%1C3%
2!

,

q35
C3%

2

~623C2%1C3%
2!

,

%p5
%

6
~623C2%1C3%

2!,

q1512q22q3 , ~B2!

resulting in

f 2~x1 ,x2!5
1

C22C3%
Fj2~x1 ,x2!2%E

Rd
dx3j3~x1 ,x2 ,x3!G ,

f 2
(3)~x1 ,x2!5

1

C3
E

Rd
dx3j3~x1 ,x2 ,x3!, ~B3!

f 3~x1 ,x2 ,x3!5
1

C3
j3~x1 ,x2 ,x3!.

Since %c and theqn are positive numbers, the constrain
C3%

2<C2%<21C3%
2/3 must be satisfied and the relatio

j25C2f 21C3%( f 22 f 2
(3)) holds. The algorithm now read

as follows.
~1! First generate the cluster centers according to a P

son distribution with number density%p .
~2! For each cluster centerx draw a uniform random num

ber z in @0,1#. If z,q1, then keep only the pointx. If q1
<z,q11q2 then keep the pointx and additionally chose a
random point according to the probability densityf 2. If q1
1q2<z then keep the pointx, chose a second point accord
ing to the probability densityf 2

(3) , and a third point accord-
ing to f 3.

APPENDIX C: CUMULANTS AND FACTORIAL
CUMULANTS

Consider expansion~7! of the PG functional in terms o
the factorial cumulantsc[k] (x1 , . . . ,xk)

ln G@h#5 (
k51

`
1

k! ERd
dx1•••E

Rd
dxkc[k]~x1 , . . . ,xk!

3~h121!•••~hk21!

5 (
k51

`
1

k! ERd
dx1•••E

Rd
dxkc[k]~x1 , . . . ,xk!

3H ~21!k1 (
n51

k

~21!k2n (
I PJn

k
hI 1

•••hI nJ ,

~C1!
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with h15h(x1) and Jn
k is formed by the ordered subsets

$1, . . . ,k% with n<k distinct entries. Hence, a subsetI PJn
k

consists out ofn distinct numbers$I 1 , . . . ,I n% with I 1

,•••,I n , e.g., J2
35$$1,2%,$1,3%,$2,3%%. Using F@h#

5G@eih# one obtains

ln F@h#5 (
k51

`
1

k! ERd
dx1•••E

Rd
dxkc[k]~x1 , . . . ,xk!H ~21!k

1 (
n51

k

~21!k2n (
I PJn

k
exp@ i ~hI 1

1•••1hI n
!#J ,
ri

in

o

tro

or

y,

05610
5 (
k51

`
1

k! ERd
dx1•••E

Rd
dxkc[k]~x1 , . . . ,xk!H ~21!k

1 (
m50

`
i m

m! (
n51

k

~21!k2n (
I PJn

k
~hI 1

1•••1hI n
!mJ .

~C2!

In them sum the first term withm50 equals2(21)k, can-
celing with the (21)k inside the braces,
ln F@h#5 (
k51

`
1

k! ERd
dx1•••E

Rd
dxkc[k]~x1 , . . . ,xk!H (

m51

`
i m

m! (
n51

k

~21!k2n (
I PJn

k
~hI 1

1•••1hI n
!mJ

5 (
m51

`
i m

m! F (k51

`
1

k! ERd
dx1•••E

Rd
dxkc[k]~x1 , . . . ,xk!H (

n51

k

~21!k2n (
I PJn

k
~hI 1

1 . . . 1hI n
!mJ G . ~C3!
im-
k-

ial
The expression inside the braces@•••# in Eq. ~C3! equals

E
Rd

dx1•••E
Rd

dxmck~x1 , . . . ,xm!h1•••hm . ~C4!

This fixes the relation between the cumulants and facto
 al

cumulants. However, there is no straightforward way to s
plify this expression. Above all the theorem of Marcin
iewicz demands that as soon ask.2, thek sum always has
to be an infinite sum~see Sec. VI A!. Hence, the cumulants
ck(•) depend on an infinite alternating sum of the factor
cumulantsc[k] (•), and vice versa.
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